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Abstract. In order to evaluate the intellectual productivity quantitatively, most 

of conventional studies have utilized task performance of cognitive tasks. Mean-

while, more and more studies use physiological indices which reflect cognitive 

load so as to evaluate the intellectual productivity quantitatively. In this study, 

the method which estimates task performance of intellectual workers by using 

several physiological indices (pupil diameter and heart rate variability) has been 

proposed. As the estimation models of task performance, two machine learning 

models, Support Vector Regression (SVR) and Random Forests (RF), have been 

employed. As the result of a subject experiment, it was found that coefficient of 

determination (R2) of SVR was 0.875 and higher than that of RF (p<0.01). The 

result suggested that pupil diameter and heart rate variability were effective as 

the explanatory variables and SVR estimation was also effective in task perfor-

mance estimation. 
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1 Introduction 

Recently, mental works such as intellectual works have occupied most of office works 

in companies and have become more and more valuable in our society. Therefore, eco-

nomic and social benefits can be larger by improving intellectual productivity such as 

the efficiency and accuracy of performing intellectual works. In order to achieve this, 

the quantitative evaluation of intellectual productivity is required, and several studies 

have been conducted [1]. However, a number of cognitive tasks used in experiments 

for the evaluation are different from actual office works, because the tasks have been 

designed in order for experimenters to collect operation logs easily and accurately. In 

order to evaluate intellectual productivity in actual office, it is desired to measure it 

when conducting actual office works. It is, however, difficult to collect and evaluate 

most of their logs. On the other hand, there are various studies which focused on human 

internal states (e.g. psychological states and cognitive load). Especially, Cognitive Load 

Theory study (CLT) [2-5] is one of the examples which have a deep relationship with 

working memory and cognitive load, which have an influence on several intellectual 

abilities. The goal of CLT is to estimate human internal states by measuring cognitive 

load in order contribute the design of education and office environment. In this point, 



CLT is highly compatible with the evaluation of the intellectual productivity. In order 

to evaluate cognitive load, various conventional studies [6-9] employed physiological 

indices (e.g. heart rate and pupil diameter). And they revealed the relationship between 

these indices and cognitive load. Furthermore, several studies [10,11] performed the 

estimation of the intellectual work performance by using physiological indices. It is 

expected that these studies contribute the evaluation of the intellectual productivity of 

office workers. However, the objective and quantitative evaluation method has not been 

established yet.  

In this study, so as to develop the quantitative evaluation method of the intellectual 

productivity by physiological response, the estimation method of task performance is 

considered by using physiological indices measured when performing a cognitive task. 

As the physiological indices for task performance estimation, heart rate variability and 

pupil diameter are employed, which are supposed to reflect human cognitive states (e.g. 

stressed and relaxed). These indices are also expected to be measured by contactless 

measurement method without giving any load. As an estimation model, two machine 

learning models, Support Vector Regression (SVR) and Random Forests (RF), have 

been considered because they are typical methods in the conventional studies which 

classify several cognitive states by using physiological indices. And the estimation ac-

curacy of these models was compared by using coefficient of determination (R2) as 

accuracy indicators. 

2 Physiological Indices 

It is known that there is a close relationship between cognitive activities and physiolog-

ical responses. In this study, contactless-measurable physiological indices were em-

ployed in order to estimate task performance because it is undesirable that the equip-

ment of physiological indices measurement gives stress to a worker when measuring 

these indices. Concretely, pupil diameter [12] and heart rate variability [13] were em-

ployed because it is expected that contactless and accurate measuring methods will be 

developed soon. 

2.1 Heart Rate Variability 

The spectral analysis of heart rate variability has been conducted in various studies be-

cause it is supposed to reflect an autonomic nerve response against stress and cognitive 

load [14,15]. Mulder [16] found that the power of 0.06-0.14Hz of heart rate variability 

was reduced by difficulty of cognitive task and high load on working memory. Moreo-

ver, low frequency (0.04-0.15Hz) of heart rate variability (LF), high frequency (0.15-

0.50Hz) (HF) and the ratio of LF and HF (LF/HF) reflect a sympathetic nerve, a para-

sympathetic nerve and the balance of these nerves, respectively [17]. In this study, these 

features, LF, HF, and LF/HF, were employed because it is assumed that the change of 

cognitive load according to task performance gives an impact on the autonomic nerve 

and it changes these three features (LF, HF, and LF/HF). In order to extract these feature 

values, the time window was set to 5 minutes (5-minute timeframe) because it should 

be long enough to contain at least 15-30 cycles of LF to make it accurate to extract 3 

feature values of heart rate variability. LFs and HFs were extracted by calculating low 



(0.04-0.15 Hz) and high (0.15-0.50 Hz) frequency wave of heart rate in 5-minute 

timeframe with shifting it every 1 minute. Moreover, LF/HF was also calculated by 

dividing LF by HF. These feature values were defined as explanatory variables for task 

performance estimation. 

2.2 Pupil Diameter 

In the field of psychophysiology, it is known that pupil diameter changes under various 

cognitive states (e.g. stressed and relaxed). There are various conventional studies 

which proved the validation of pupil diameter as the index of load on working memory 

[6-9]. On the other hand, there is a study which suggests a relationship between speed 

of information processing and the size of pupil diameter [18]. Moreover, there is an-

other study which showed that difficulty of sound classification has a relationship with 

the size of pupil diameter [21]. In this study, pupil diameter, therefore, was employed 

as an effective feature for task performance estimation. Mean pupil diameter (MPD) 

was extracted as a feature value of pupil diameter by calculating the average of pupil 

diameters in 5-minute timeframe with shifting it every 1 minute as well as the heart rate 

variability. 

3 Estimation Method 

A cognitive task was employed in this study in which a task worker performs repeatedly 

problems which can be solved in several seconds. The task performance was measured 

by counting the number of solved problems as well as the above physiological feature 

value extractions. Then task performance was estimated by regression analysis with 

using physiological features (i.e. LF, HF, LF/HF, and MPD) and they were compared 

with the measured task performance. There are various methods of regression analysis 

and multiple regression analysis is one of the famous methods. However, it is assumed 

that regression line cannot be calculated accurately by the analysis because of multicol-

linearity. On the other hand, there are various studies where machine learning methods 

are employed as the physiological analysis [20-25]. In this study, therefore, SVR and 

RF were employed because these methods are supposed to avoid multicollinearity prob-

lem and have high generalization capability.  

3.1 Support Vector Regression (SVR) 

SVR is one of the non-linear regression analysis methods based on Support Vector Ma-

chine (SVM), which is effective for 2-class classification and was employed so as to 

estimate emotions by using several physiological indices [21,22] and to detect stress 

[23].  

The method to generate SVM classifier is described below. If n features 

 belong to class , in order to classify them correctly, the hy-

perplane  (  is a coefficient vector,  is a bias term) is calculated which 

maximizes the distance between the hyperplane and the support vector  which is the 



closest to the hyperplane of all . The SVM model (the above hyperplane) can be cal-

culated by solving this problem. The SVR model can be also calculated by using this 

hyperplane and solving regression problem. 

3.2 Random Forest (RF) 

RF is the machine learning algorithm proposed by Breiman [26] and is used to solve 

classification or regression problems as well as SVM and SVR. RF is the application 

method of the classification method called “bagging”, which generates a number of 

weak learners by using a part of training data and integrate these weak learners by the 

majority rule. When estimating cognitive states by several physiological indices, it is 

said that RF and AdaBoost, which is similar to RF, are as accurate as SVM [24,25]. 

The method to generate RF regression model is described below. First, n data is ex-

tracted with allowing duplication from  training data  ( ) and 

these n data is defined as new training data (bootstrap sampling). Next, a decision tree 

is generated by using this training data, and  (< ) features are selected randomly in 

each non-terminal node of the tree. If several decision trees are generated as above, 

these trees have a weak correlation. After generating  decision trees, RF training fin-

ishes. The majority or the average of outputs from these trees is defined as the estima-

tion result in the case of classification or regression problem solving, respectively. In 

training phase, the decision of the size of tree node, , and  are required before train-

ing.  It is known that the node size and  are recommended to be 5 and , respec-

tively in the case of regression problem [26]. On the other hand,  may be large enough 

because overlearning is not caused even though  is too large. In this study, these val-

ues were employed when employing RF as the estimation method. 

3.3 Model Calculation 

In training phase, SVR and RF models were calculated by using physiological data of 

one task worker in order to deal with individual difference of physiological responses. 

Moreover, MATLABⓇ[27] was used to calculate models and LIBSVM and random-

forest-matlab were used as machine learning library. 

4 Experiment 

4.1 Purpose 

The purpose of this experiment was to validate heart rate variability and pupil diameter 

as explanatory variables of task performance estimation and to evaluate the accuracy of 

the proposed methods. 



4.2 Participants 

31 healthy volunteers participated in this experiment and their native language was Jap-

anese. In this experiment, only those who do not wear glasses participated because the 

accuracy of eye tracking system gets lower when wearing glasses. 

4.3 Measurement of Physiological Indices 

In the case of measurement of heart rate, ECG electrodes were pasted on a left rib and 

a right clavicle. Ground and reference electrodes were pasted on right and left earlobes, 

respectively. In order to reduce noise signals, the time constant of high-pass filter and 

the cut-off frequency of low-pass filter were set to 3.0 sec and 100Hz, respectively. 

Furthermore, notch filter was set to 60Hz so as to reduce hum noise from commercial 

power supply. 

Pupil diameter was measured by an infrared eye tracking camera, faceLAB5 [12]. A 

participant sat on the chair while performing tasks on the desk. Then, the position and 

height of the chair were adjusted and the angle of the eye tracking camera was set to 36 

degrees against the desk so as to recognize the face of a participant correctly. 

4.4 Cognitive Task and Instruction of Task Performing 

In this study, Receipt Classification Task [28] was used as a cognitive task to evaluate 

task performance. The task was presented on PC display. 

In order to avoid overlearning and generate regression models properly, various val-

ues of training data should be measured and provided to machine learnings as training 

data. It is therefore necessary to instruct participants to change task performance (i.e. 

the number of classified receipts) and collect their physiological indices while their task 

performance varies. In this study, the participants were instructed to change the speed 

of classifying receipts according to the indicator of color bar displayed on the left as 

shown in Fig. 1. Concretely, the slower they were instructed to change the classifying 

speed, the larger the ratio of blue in the color bar got. On the contrary, the faster they 

changed the speed, the larger the ratio of red got. At the beginning of the task, the color 

bar was red or blue. Then, the ratio of the other color got larger and larger at a constant 

rate. Finally, the ratio got 100% 30 minutes after the beginning. In this study, the case 

in which the color changes blue into red was called “Pace-up” Phase, while the opposite 

case was called “Pace-down” Phase. 

4.5 Experimental Protocol 

The experiment was conducted for 2 days. The purpose of the first day experiment was 

(1) to perform participant screening, (2) to get accustomed to experimental environment, 

and (3) to practice Receipt Classification Task and Pace-up and Pace-down Phase. Re-

garding (1), the accuracy of eye tracking could be low because the camera could not 

capture eyes of some participants enough if eyes of them were small. In this case, they 

don’t participate in the second day experiment. In regard to (2), it was supposed that 

participants got stressed because they participated in the experiment and performed the 

cognitive task for the first time, which may affect their physiological responses. In order 



to reduce this psychological influence, the first day experiment was designed to make 

them adapt to this environment. Finally, regarding (3), if participants perform the cog-

nitive task for the first time, cognitive load on them may be high even if the difficult of 

the task was low. However, if they get used to the task, cognitive load may be lower 

even though the difficulty was the same. This is generally called “Learning Effect”. 

This effect should be reduced because it gives an influence on physiological indices. In 

order to remove this effect, they practiced the task, Pace-up, and Pace-down Phase in 

the first day experiment. 

Table 1.  Experimental schedule: second day 

Duration 

(minutes) 

Content 

10 Setting of Electrodes and 

Eye Tracking Camera 

10 Task Practice 

30 Phase A* 

10 Rest 

30 Phase B* 

5 Removal of the Instruments 

*: Measurement of Physiological Indices and Task log. 

 

The experimental schedule of the second day is shown in Table 1. Phase A in this 

table was set to either Pace-up or Pace-down Phase at random while Phase B was set to 

the other in order to get counterbalance of ordering effect. Physiological indices and 

task log were recorded in these phases. 

5 Result 

5.1 Participant Screening 

As the result of screening in the first day experiment, pupil diameters of all the partici-

pants could be measured correctly by the eye tracking system. Then all of them partic-

ipated in the second day experiment. However, the heart rate variability data of 4 par-

ticipants were not properly measured because strong artifacts appeared. Thus, the ex-

perimental results of 27 participants were analyzed, where 13 participants performed 

Pace-up Phase in Phase A, while the other 14 did it in Phase B. 

5.2 Task Performance Estimation 

After the experiment, SVR and RF models which estimate task performance (i.e. the 

number of classified receipts) were calculated every participant by using the physiolog-

ical features such as LF, HF, LF/HF and MPD. Then, the accuracies of these models 

were evaluated by using 13-fold cross validation. 

Average of coefficients of determination R2 of each method are described in Table 2. 



As the result of paired and two-tailed t-test, R2 of the SVR model was significantly 

higher than that of RF (p < 0.001). 

Table 2.  Average of R2 of each method. 

Method 
R2 

Average SD 

SVR 0.875* 0.097 

RF 0.648 0.199 

*: R2 of SVR was significantly higher than that of RF (p < 0.001)  

 

An example of the SVR estimation is shown as Fig.1 (R2 = 0.969). The values of 

vertical axis in Fig. 1 was normalized to [-1,1]. “Measured Values” in Fig.1 is the num-

ber of classified receipts and “Estimated Values” is the one estimated by SVR. 

 

 
 

Fig. 1. An example of the SVR estimation (Pace-up Phase). 

6 Discussion 

6.1 Estimation Methods 

As the comparison of the result between the SVR and RF models, the SVR model has 

significantly better estimation performance in terms of R2. RF is the ensemble learning 

method which reduces generalization error by suppressing the variance with keeping 

the bias of model low. In order to achieve it, RF generates a number of decision trees 

which have weak relationship to each other by using bootstrap sampling. However, if 

the number of training data is small, RF cannot generate various decision trees enough 

to estimate response variables accurately. In this study, there were 52 feature data per 

a participant. Finally, only 48 training data per a participant remained because 13-fold 



cross validation was employed (52×12/13 = 48). Regarding RF, the number of this sam-

ple, 48, was not enough to estimate task performance accurately. On the other hand, in 

the case of the SVR model, the number of tunable parameters is more than the RF model. 

Therefore, the performance of the SVR model is supposed to be significantly more ac-

curate in this study.  

6.2 Physiological Indices 

In this study, the contribution of feature values (LF, HF, LF/HF and MPD) was consid-

ered in the case of the SVR model. These contributions can be discussed by evaluating 

each component of the coefficient vector  in the hyperplane  calculated 

by SVR training. Average coefficients of the feature values are shown in Table 3. It 

was found that the contribution of MPD was the highest among the feature values and 

that of LF was the second highest. 

Table 3. Average coefficients of feature values. 

 MPD LF LF/HF HF 

Average of 

Coefficients 
2.00 -0.98 -0.71 -0.27 

 

Regarding the sign of each coefficient, MPD had positive relation to task perfor-

mance. The result was supported by the study conducted by Poock [18] which shows 

the positive relationship between the size of pupil diameter and the speed of information 

processing. In the case of Receipt Classification Task, when the speed of performing 

task got faster, it is assumed that it requires parallel information processing in which 

participants should memorize several components (e.g. the date, amount, and name of 

company of a receipt). Then, it was supposed that their pupil diameter got larger [6,7] 

because of the high cognitive load. On the other hand, LF had negative relation to task 

performance. According to Mulder [16], the higher the difficult of a cognitive task gets, 

the lower the power of LF gets. This supports the result of this study. 

6.3 Individual Difference 

As mentioned above, the contribution of MPD was the highest, while MPD of some 

subjects had a weak correlation with task performance and heart rate variability of them 

had a strong correlation. Table 4, Fig.2, and Fig.3 show an example (EX1). The values 

of vertical axis in Fig. 2 and Fig.3 were normalized to [-1,1]. 

Comparing Table 4 with Table 3, it shows coefficients of EX1 are different from the 

averages by individual difference. Therefore, if the estimation method such as SVR and 

RF employs a single explanatory value, the estimation performance can be low. In the 

case of the SVR model which employed these feature values, R2 in EX1 was 0.878, 

respectively. The performance is so high, which suggested that plural physiological in-

dices make task performance estimation accurate even if the individual differences are 

found. 

 



Table 4. Coefficients of feature values in EX1. 

 MPD LF LF/HF HF 

Coefficients -0.02 -3.05 -2.06 -3.38 

 

 
Fig. 2. Physiological features and task performance in EX1. 

 

 

 
 

Fig. 3. An example of the SVR estimation in EX1 (Pace-up Phase). 

7 Conclusion 

In this study, the method which estimates task performance of intellectual workers by 

using several physiological indices (pupil diameter and heart rate variability) was pro-

posed in order to develop the objective and quantitative evaluation method of the intel-

lectual productivity. As the physiological indices for task performance estimation, heart 



rate variability and pupil diameter were employed, which were supposed to reflect hu-

man cognitive states (e.g. stressed and relaxed). These indices are also expected to be 

measured by contactless measurement method without giving any load.  As the estima-

tion model of task performance, two machine learning models, Support Vector Regres-

sion (SVR) and Random Forests (RF), have been employed. As the result of a subject 

experiment, it was found that coefficient of determination (R2) of SVR was 0.875 which 

was higher than that of RF (p<0.01). The result suggested that pupil diameter and heart 

rate variability were effective as the explanatory variables and SVR estimation was also 

effective in task performance evaluation. 

However, the cognitive task, Receipt Classification Task, which was employed in 

this study, requires only a part of the cognitive processing used by office works. It is 

therefore necessary to consider the accuracy of the proposed method with various cog-

nitive tasks. In the future, the authors are aiming at developing the more accurate eval-

uation method of the intellectual productivity. 
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