
Enhancing Metric Perception
with RGB-D Camera

Daiki Handa, Hirotake Ishii, and Hiroshi Shimoda

Kyoto University, Graduate School of Energy Science, Kyoto pref., Japan
{handa,hirotake,shimoda}@ei.energy.kyoto-u.ac.jp

Abstract. Metric measurement of environment has fundamental role
in tasks such as interior design and plant maintenance. Conventional
methods for these tasks suffer from high development cost or unstabil-
ity. We propose a mobile metric perception enhancement system which
focuses on interactivity through user locomotion. The proposed system
overlays geometric annotations in real-time on a tablet device. The an-
notation is generated from RGB-D camera in per-frame basis, alleviat-
ing the object recognition problem by effectively utilizing processing
power of human. We show a few illustrative cases where the system is
tested, and discuss correctness of annotations.

Keywords: Augmented Reality, Augmented Human, Mobile Device, RGB-
D Camera, Geometric Annotation, Per-frame Processing

1 Introduction

Real world tasks such as interior design and plant maintenance rely on
knowledge of geometric properties of surrounding objects. In these sce-
narios, measurement of environment often forms the basis of higher level
sub-tasks. We propose metric perception enhancement through overlaying
geometric annotation extracted from RGB-D data in real-time.

Existing augmented reality solutions for these tasks mostly depend on
the idea of overlaying suitable pre-made virtual objects such as furniture or
CAD model [1]. While this approach can potentially provide tailored user ex-
perience, these applications tend to add little benefit compared to required
application development and deployment cost. These costs may occur from
employment of artists to create virtual object, setup of markers to track the
device, or maintainance of up-to-date CAD data of the environment.

On the other hand, there are many methods to create 3D model of the
environment on-the-fly, generally called Simultaneous Localization and Map-
ping (SLAM) [2]. But these methods are either not robust enough, only able
to provide sparse model, or computationally expensive. So dynamic content
creation through automatic modeling of environment is not feasible.

xyx
タイプライターテキスト
http://www.springer.com/computer/hci/book/978-3-642-39404-1The original publication is available at www.springerlink.com

xyx
タイプライターテキスト
5th International Conference, VAMR 2013, Held as Part of HCI International 2013,Las Vegas, NV, USA, July 21-26, 2013, Proceedings, Part I

xyx
タイプライターテキスト

xyx
タイプライターテキスト

Recent introduction of consumer-grade RGB-D sensors such as Microsoft
kinect enable us to use it on mobile devices such as tablets, making it possi-
ble to robustly acquire local 3D point cloud in real-time.

We propose geometric annotation application that can be used with little
constraint on the environment. We generate salient annotations from RGB-D
data, and overlay them on per-frame basis. The proposed system can anno-
tate straight line in sight with lengths, and surfaces with contour lines. While
the quality of output is lower than that of perfect CAD data, tight interaction
loop created by per-frame presentation of data can compensate the down-
side, and can provide reasonably good user experience at very low cost. The
key insight is that human can easily associate flickering or duplicated an-
notations to real world structure, while it is very difficult for computers to
accurately create coherent model of the environment from raw data.

We will illustrate a few cases where our system would be useful and
discuss correctness of generated annotations.

2 Generating Annotation

To visualize metric properties of environment, two complementary kinds of
annotations are generated. The length annotations enable the user to per-
ceive lengths of straight edges abundant in artificial objects. The height
annotations are contour lines to help understanding featureless or curved
surfaces where straight edges are absent and thus length annotation is un-
available.

Dataflow of the annotation process is shown in Fig. 1. The input of the
system is QVGA frames from a RGB-D camera and the gravity vector 1 from
a tablet.

2.1 Edge Detection and Refinement

The goals here are extraction of straight edges and calculation of their
lengths. Output of current depth sensors typically contains jagginess of sev-
eral pixels near object outline, while RGB image have effective angular res-
olution of nearly one pixel. So, three-dimensional edges are estimated from
line segments in RGB image.

Line segments are extracted from RGB image by first converting it to
grayscale, and then applying LSD [3] detector. The detected line segments
contain Number of False Alarms (NFA) values, which are used as saliency in
later optimization phase.

Detected edges can be categorized to three classes as shown in Fig. 2;
a textural edge lies on planar surface, and a structural edge corresponds
1 Mobile platform such as Android provides gravity sensor based on low-pass filter-
ing of accelerometer data.

Gravity

1. Edge Detection
2. Layout Optimization

Fig.1. Upper Middle: Lengths from line segments, Lower Middle: contours from per-
pixel depth coloring

a ridge or a cliff of an object. Structural edges are further divided to con-
tinuous or discontinuous by whether two sides of the edge are on a same
object (continuous) or not (discontinuous). Discontinuous strucutral edges
need special treatment when calculating length, since depth is ill-defined on
the discontinuous edge.

Textural Continuous Structural Discontinuous Structural

true

true false

true false

don't care

Fig.2. Edges can be classified by comparing positions and normals near midpoints.
In reality, occulusions, shadows and noise make distinction unclear.

To check discontinuity of an edge, p1 ≃ p2 condition (in Fig. 2) is used.
When depth is continuous at an edge, 3D distance d between two symmetric
points near the midpoint is linear to that of screen space. Pair-distance d(s)

for points 2s apart in screen space is defined as follows:

d(s) = |T (pmid + sn)− T (pmid − sn)| (1)

where pmid is the midpoint of the edge, T (p) is 3D position of the pixel, and
n is the normal of the segment. By using d(s), the discontinuity conidition is
approximated by d(5px)

d(2px) <
5
2α, where α ≃ 1 is a sensitivity constant.

After edge classification, discontinuous edges are refined by moving to-
ward the nearer (i.e. foreground) side to avoid jagged region. After edge
refinement, length is calculated respectively from two endpoints of the seg-
ments. If depth at an endpoints is unavailable due to depth camera limita-
tion, the edge is discarded as false one.

2.2 Layout Optimization

In complex scenes, edge annotations may become unreadable due to over-
lap. To mitigate this problem, annotation density distribution on screen is
represented by a lattice, and edges are picked sequentially in order of de-
creasing saliency. The greedy selection process is depicted in the following
pseudocode:

def select_edges(edges):
bool[][] density = {{false,...},...}
edges_to_show = []
for edge in sort(edges, order_by=NFA, decreasing):

if not any(density[x,y] for (x,y) in cells_on(edge)):
for (x,y) in cells_on(edge):

density[x,y] = true
edges_to_show.add(edge)

return edges_to_show

Here we use 20 px for cell and lattice size where frame size is 320 px ×
240 px. To allow edges with a shared vertex like a corner of a box, cells
corresponding to endpoints are excluded when computing cells_on(edge).

2.3 Height Annotation

Normalized gravity vector ngravity is used to show contour lines. To draw a
single contour line with camera-relative height h, intensity I(p) at pixel p in
screen coordinates is determined by Eq. 2.

Ih(p) =
1

1 + (T (p) · ngravity − h)2w2
(2)

where T (p) is 3D position of p in camera coordinates, and w is a constant
controlling the line width. In this paper, height annotations are drawn with
20 cm interval.

The decision to draw height annotations relative to device position in-
stead of automatically detected floor, ensures smooth temporal behavior of
lines by avoiding non-robust floor detection step. It is up to the user to hold
the device at appropriate height to get meaningful readings.

3 Implementation

In this section, implementation details which can affect performance and
mobility are described.

3.1 Hardware

The device consists of an Android tablet and a RGB-D camera as shown in
Fig. 3. Since the camera is powered by USB from the tablet, there is no need
for an external power supply. Mobility of the system is further increased by
modifying the camera shell and cable. This results in a device with total
weight of under 450 g, which can be used portably with a single hand.

Xtion

Nexus 7

Fig.3. Nexus 7 tablet and modified ASUS Xtion PRO LIVE RGB-D camera connected
via USB

Note that a Nexus 7 contains an accelerometer, so the only external com-
ponent is the RGB-D camera.

3.2 Software

The system is implemented on Android 4.2.1, and most part is coded in Java.
A screenshot in Fig. 4 shows the UI and a typical result of annotation.

Fig.4. A screenshot of the system

To maximize performance, the line segment detector [3] is compiled for
ARM NEON instructions and called via Java Native Interface. Rendering
of annotations is performed on GPU, and particularly, height annotation is
implemented as a fragment shader.

The UI allows respective switching of length and height annotations to in-
crease framerate by turning off unnecessary annotations. To limit the mode
of interaction to moving in the real world, controls for parameters such as
detection threshold are intentionally excluded.

4 Experimental Evaluation

We illustrate several use cases by showing example of operation and evalu-
ate accuracy of annotations. All examples were run at real-time frame rate.

4.1 Interactive Usage

Figure 5 shows the change in display when the user moved toward an object.
Initially invisible small features (e.g. lattice-like object in 4) become visible

with a closer look. In this example, natural user movement cause scale to
change and show what the user would want to see. In general, it is often
possible to read the length of an arbitrary edge by viewing from an appro-
priate angle and position. It can be argued that this kind of minimal-guessing
(on the computer side) approach is more effective and feasible than trying
to acquire detailed model of the environment and construct a GUI to choose
what to see in the model.

1 2

3 4

Fig.5. 1-4: Scale of length annotation changes as the user moves toward the Android
mascot

Figure 6 illustrates how height annotation can complement length anno-
tation for a curved object.

In these cases, two kind of annotations are used separately to see the
effect respectively. Using both annotations simultaneously as in Fig. 4 does
not cause a clutter, so we can omit GUI switches and make real world lo-
comotion a sole, yet complete mode of interaction. This property would be
useful when using the proposed technique with a HMD or a mobile projector
like [4].

Fig.6. Left: Length annotation cannot display height of the round-end cylinder Right:
Height annotation reveals height of 1.5 units, which corresponds to 30 cm

4.2 Latency

Important to interactivity is the latency. Typical latency to process a single
frame is shown in table 1. Note that actual framerate is somewhat higher
than determined by the total latency, since the code is multi-threaded.

Table 1. Typical Latency

Section Time[ms]

Line Segment Detection (QVGA) 481
Edge Analysis & Refinement 8
Layout Optimization 4
Rendering & CPU-GPU Transfer 25

Total 518

Line segment detection is taking significant time and clearly needs a
faster implementation, possibly on GPU. However, the system runs at nearly
30 fps when only height annotation is used.

4.3 Discussions on Correctness

Ultimately, precision would be limited by depth camera error, for which a
detailed analysis exists [5]. However, incorrect lengths from false edges are
far more noticeable in the current implementation.

In Fig. 5, there are roughly two kinds of false edges; edges corresponding
to no structure nor texture, and fragmented or incomplete edges along long
lines. An example for each kind is shown in Fig. 7.

Illumination Incomplete

Fig.7. Left: false edge along shadow Right: edge is structural, but too short

The former is caused by shadow or gradation due to illumination, but
human is so good at distinguishing illumination and texture (i.e. lightness
constancy effect [6]) that difference between human and machine percep-
tion becomes noticeable. This kind of false edges are relatively harmless
since they appear where other real edges are absent.

The latter is more problematic, since shorter edges can hide original
long edge in layout optimization. Solution to this would be giving long edges
higher scores in optimization, or using depth-guided line segment detection.

5 Conclusion

In this paper, we have shown that the conveying geometric information di-
rectly to the user is useful in various settings and relatively simple to im-
plement compared to conventional approaches like in [1]. We proposed a
method to annotate lengths and contours and implemented in a truly mobile
way.

The experiment shows the ability of the system to explore edges by real
world locomotion of the user. It also shows that per-frame processing can
augment perception more cost-effectively than conventional methods by cre-
ating tighter interaction loop. Also, this kind of real world interaction would
be beneficial to hands-free implementations in the future.

Inaccuracy and slowness of line segment detection is found to be a limit-
ing factor in the current implementation. This could be remedied by depth-
guided segment detection or a fast GPU-accelerated implementation in con-
junction with more sophisticated layout optimization.

Acknowledgements. This work was supported by JSPS KAKENHI Grant
Number 23240016.

References

1. Carmigniani, J., Furht, B., Anisetti, M., Ceravolo, P., Damiani, E., Ivkovic, M.: Aug-
mented reality technologies, systems and applications. Multimedia Tools and Ap-
plications 51 (2011) 341–377

2. Aulinas, J., Petillot, Y.R., Salvi, J., LladÃş, X.: The SLAM problem: a survey. In:
Catalonian Conference on AI. (2008) 363–371

3. Rafael Grompone von Gioi, Jeremie Jakubowicz, Jean-Michel Morel, Gregory Ran-
dall: LSD: a Line Segment Detector. Image Processing On Line (2012)

4. Mistry, P., Maes, P.: Sixthsense: a wearable gestural interface. In: ACM SIGGRAPH
ASIA 2009 Sketches. SIGGRAPH ASIA ’09, New York, NY, USA, ACM (2009) 11:1–
11:1

5. Khoshelham, K., Elberink, S.O.: Accuracy and resolution of kinect depth data for
indoor mapping applications. Sensors 12(2) (2012) 1437–1454

6. Adelson, E.H.: Lightness perception and lightness illusion (1999)

	Enhancing Metric Perception with RGB-D Camera

