
A Study on Design Support System for Constructing

Machine-Maintenance Training Environment Based on Virtual Reality Technology

H. Ishii, T. Tezuka and H. Yoshikawa
Graduate School of Energy Science

Kyoto University
Gokasho, Uji, Kyoto, 611-0011, Japan

ABSTRACT

A design support system has been developed for con-
structing VR-based training environment for machine
maintenance work. The features of the developed design
support system are : 1) users can construct various train-
ing environments under GUI (Graphical User Interface)
environment, 2) the users need not any expert knowledge
about computer programming, 3) Petri net model is uti-
lized for representing the state transition of objects in
virtual environment, and 4) the constructed environment
can be easily changed and reused. In this report, the sys-
tem configuration, how to model the state transition of
objects with Petri net and the results of system valida-
tion experiments are described.

1. INTRODUCTION

Recently, Virtual Reality (VR) technology has emerged
and been developing remarkably so that numerous at-
tempts have been made to construct various training en-
vironments in virtual environment [1, 2]. The authors
have developed a VR-based training environment for dis-
assembling a check valve used in the Nuclear Power Plant
(NPP), and it was found that the training environment
based on virtual reality technology could be very effec-
tive for novice trainees to understand the procedure of
maintenance work, the structure of the machines and so
on[3].

However, there arises a serious problem for developing
software systems for VR-based training. In fact, the work-
load of constructing the training environment is very large
when a new training environment should be constructed
for different kinds of training tasks.

On the other hand, there have been several systems de-
veloped which can reduce the workload for construct-
ing virtual environments [4]. Division LTD., has devel-
oped a software called “dVISE” with which users can
construct virtual environments without programming [5].
And Solidray Research, Inc., has developed a software
called “RealMaster” which enables users to construct in-
teractive virtual environments, in which trainees can ma-
nipulate objects with their hands [6]. With these sys-
tems, the users can construct a simple virtual environ-

ment under GUI. However, it is very difficult for users
to construct complicated virtual environments in which
trainees can disassemble/assemble machines by using in-
put devices such as a 3D mouse.

In this study, we aim at constructing an effective user
support system for multi-purpose VR-based training sys-
tem, by which users can construct a VR-based training
environment only by the guidance of GUI, by setting the
information necessary for the training without coding pro-
grams. The major points in the system development are:

(1) Effective presentation of structured information on
GUI for smooth guidance to construct the VR-based
training environment, and

(2) Application of special Petri net model developed to
model the state transition of objects in virtual envi-
ronment.

Especially, the application of Petri net to the support sys-
tem enables the users to design the relationship among
each state of objects visually. Moreover by analyzing the
developed Petri net, it is possible to search for the opti-
mum procedure of maintenance work.

In this paper, a basic concept of the developed support
system and how to model the state transition of objects
are described. And after the system configuration is out-
lined, the results of the experiments to validate the devel-
oped support system are described.

2. BASIC CONCEPT

Firstly, it is necessary to define the term “object” for this
training system in virtual environment; “object” includes
various parts of the machines to be assembled or disas-
sembled, tools to be used for assembly/disassembly work,
and both hands.

To describe virtual environments without programming,
the concept “state of objects” is introduced to a virtual
environment. For example, assume that a trainee grasps
a nut on a desk and drop it to the desk, the nut can take
three kinds of states in virtual environment: “on a desk”,
“grasped by a hand” and “falling to a desk” (See Figure
1). And at each state, the nut behaves differently: at
the state “grasped by a hand” the nut will attach to the

hirotake
Proceedings of 1998 IEEE International Conference on Systems, Man, and Cybernetics, pp. 2635-2640, 1998

Related event : grasp hand Related event : release hand

State :

Movement:

State :

Movement:

State :

Movement:
on a desk

still

grasped by a hand

follow hand

falling to a desk

free fall

Figure 1: Relationship between state and its movement.

hand, at the state “falling to a desk” the nut will fall down
(free-fall). And the state of the nut changes according to
the relational events: an event “grasp a nut by a hand”
translates the state of the nut from the state “on a desk”
to the state “grasped by a hand”.

Therefore, the management of “objects”, their state tran-
sitions and their behaviors in a virtual environment can
be described with two databases as follows:

• State-Transition Database
The information on what kind of states the object
can take and how the states of objects change on
virtual environment.

• Motion Database
The information on how the object moves at each
state.

For constructing virtual environments with the developed
system, the users have to construct these two databases.
To make it easy for users to construct the databases, GUI
environment has been constructed. Concerning about the
Motion database, it is possible for users to make the Mo-
tion database by selecting items and setting the related
numerical values. To make it possible to construct vari-
ous training environments, many kinds of variable items
must be prepared. In this system, about 60 parameters
can be set: such as the surface of objects, the movement
of objects, and so on. For the further details of these
parameters, refer to the authors’ preceding paper [7].

Concerning about the State-Transition database, a new
method has been developed to model the state transition
of objects in virtual environment, by which the users can
input the state transition by constructing Petri net vi-
sually. The details of the way how to model the state
transition of objects by Petri net will be explained in the
next section.

3. PETRI NET

Petri net definitions
The Petri net model used in the developed support system
follows the concepts and notations defined by ISO IEC
[8]. Figure 2 shows the graphical notation of Petri net.

Terminology Symbol

Normal
Transition

Single Place

Automatic
Transition

Normal Arc

Token

Terminology Symbol

Pool Place

Inhibitor Arc

Reference Arc

Figure 2: Graphical notation of Petri net.

Hereafter, the color Token is also defined but it is used
only at training simulation. Therefore, when constructing
virtual environments, the users need not take care of the
color Token. This means that the users need not any
knowledge of color Petri net.

Definition 1 (HLP-net)
A HLP-net is defined as
HLPN = (P, T, F,

∑
;C, W1, W2, K, M) where

• P = {p1, p2, ..., pm} , m = |P | > 0 is a finite set of
elements called Places.

• T = {t1, t2, ..., tn} , n = |T | > 0 is a finite set of
elements called Transitions disjoint from P ∩ T = ∅.

• F ⊆ (P × T) ∪ (T × P) is a finite set of elements
called Arcs.

• ∑ = {c1, c2, ..., cl} , l =
∣∣∑∣∣ > 0 is a finite set of

elements called Colors.
• C : P → ∑

is a color function. C (p) is a color set
of Token which can be marked at Place p.

• W1 : F → {0, 1} is a weight function of Normal Arc.
W1 (p, t) is the weight of Normal Arc which connects
p to t. W1 (t, p) is the weight of Normal Arc which
connects t to p.

• W2 : F → {0, 1} is a weight function of Inhibitor
Arc. W2 (p, t) is the weight of Inhibitor Arc which
connects p to t. In our support system, W2 (t, p) is
not defined.

• K : P → {1,∞} is a capacity function of Places.
K(p) is the capacity of Place p.

• M : P → ∑
is a set known as the marking of the

net. M(p) is a color set of Tokens which are marked
in Place p.

where ∅ is an empty set and |X| is the cardinality of a
set X. A set of Input Places and a set of Output Places
of Transition t are represented by ·t and t·, respectively.
Likewise, a set of Input Transitions and a set of Output
Transitions of Place p are represented by ·p and p·, re-
spectively. And W1 (p, t) and W2 (p, t) can not be 1 at
the same time.

Definition 2 (Single Place)
Single Place pi is a Place which satisfies K(pi) = 1
and is represented by a circle as shown in Figure 2.

Definition 3 (Pool Place)
Pool Place is a Place which satisfies K(pi) =∞ and
is represented by a ellipsis as shown in Figure 2.

Definition 4 (Normal Transition)
For distinction from Automatic Transition defined at
Definition 5, Normal Transition is defined as a Tran-
sition which does not fire before any events will occur
even if the conditions for firing (Definition 9) are sat-
isfied. Normal Transition is represented by a single
bar as shown in Figure 2.

Definition 5 (Automatic Transition)
Automatic Transition is defined as a Transition
which will fire whenever the condition for firing (Def-
inition 9) is satisfied. Automatic Transition is repre-
sented by two parallel bars as shown in Figure 2.

Definition 6 (Normal Arc)
pi is called as Input Place of a Transition tj where
∃pi ∈ P , ∃tj ∈ T and W1(pj , ti) = 1. In graphical
notation, it is represented by drawing an arrow from
Place pi to Transition tj . The arc is called as Nor-
mal Arc for distinction from Inhibitor Arc defined in
Definition 7. Likewise, pi is called as Output Place
of a Transition tj where W1(tj , pi) = 1. And it is
represented by drawing an arrow from Transition tj

to Place pi.

Definition 7 (Inhibitor Arc)
When ∃pi ∈ P and ∃tj ∈ T satisfies W2(pi, tj) = 1,
pi is called as Inhibitor Input Place of Transition tj .
In graphical notation, it is represented by drawing
an arc from Place pi to Transition ti which is termi-
nated by a small circle at the Transition ti. And the
arc is called as Inhibitor Arc.

Definition 8 (Reference Arc)
Place pi is called as Reference Place of tj ∈ T where
∃pi ∈ P , W1(pi, tj) = 1 and W1(tj , pi) = 1. In
graphical notation it is represented by connecting
Place pi and Transition tj ∈ T with a bi-directional
arc. And the arc is called as Reference Arc.

Definition 9 (Enabling)
A Transition t is enabled when the all conditions as
follows are satisfied:
1. If W2(p, t) = 1 then |M(p)| = 0 where ∀p ∈ ·t
2. If W1(p, t) = 1 then |M(p)| > 0 where ∀p ∈ ·t
3. If |M(p)| �= 0 then W1(p, t) = W1(t, p) = 1 or

K(p) =∞ where ∀p ∈ t·

When a Transition t fires, the marking of the net
M (p) is transformed to a new marking M ′ (p) ac-
cording to the following rule:

M ′ (p) =

M (p) \m
(

p ∈ ·t, p /∈ t·,
W2 (p, t) = 0,
m ∈ C (p)

)

M (p) ∪ g

(
p ∈ t·, p /∈ ·t,
g ∈ C (p)

)
M (p) (p ∈ ·t ∩ t·)

(1)

where \ is a relative complement.

Modeling with Petri net
Basically, a state of a object and a transition of states
correspond to a Place and “fire” of a Transition, respec-
tively. And marking a Place with Tokens represents that
the object is in the corresponding state. The transition
of objects’ states is represented by the transition of To-
kens. This means that one Token is assigned to one object.
Concretely the procedure for modeling with Petri net is
as follows:

(1) Decide the objects to be located in virtual environ-
ment
For example to model a task “Grasp a pen placed on
a desk with a right hand and drop the pen to floor”,
the objects are desk, pen, right hand and floor.

(2) Extract the states which each object can take
For example, while a trainee grasps a pen on a desk
with a right hand and drops the pen to floor, the
states of the pen can be 4 kinds of states: “on the
desk”, “touched by the right hand”, “grasped by the
right hand” and “falling to the floor”. Likewise the
state of the right hand can take 3 kinds of states:
“open”, “touch the pen” and “grasp the pen”.

(3) Decide events which cause the state transition of ob-
jects
In our support system, 5 kinds of items as shown in
Table 1 can be selected as the event which causes
the state transition of objects. For example, if the
target task is “Grasp a pen placed on a desk with
a right hand and drop the pen to floor”, the events
which cause the state transition are “touch the pen
with the right hand”, “grasp the pen by the right
hand”, “release the pen by the right hand” and “the
pen contacts the floor”. And in the support system
the event “touch pen with right hand” can be set
by selecting a prepared item “A contacts with B”
and selecting “right hand” as “A” and “pen” as “B”
respectively.

(4) Construct Petri net
The states extracted at step (2) and the events de-
cided at step (3) correspond to Places and Transi-
tions respectively. The states of objects before the
event occurs and the states of objects after the event

Table 1: Items which can be selected as an event

Event Example

A contacts with B a spanner contacts with floor
detach A from B detach right hand from a pen
open hand open right hand
grasp hand grasp left hand

satisfy a condition a pen is grasped by right hand

occurs correspond to Input Places and Output Places
respectively.

(5) Set initial states of objects in virtual environment
By marking initial Tokens in Petri net, the initial
states of objects can be set for training. Here, the
initial position of objects in virtual environment are
determied by setting 3 dimensional position for each
Token.

To model the state transition of objects more effectively,
the following 5 definitions are introduced:

• Automatic Transition and Normal Transition
There might be situations that it is necessary to
cause the state transition of objects without refer-
ence to any event. For example, to construct a vir-
tual environment in which a trainee is warned when
he got off all nuts which is not allowed to do so,
the virtual environment must be designed to check
whether the number of nuts is 0 or not. Therefore in
this study, two Transitions are distinguished: “Nor-
mal Transition” which fires according to an event
and “Automatic Transition” which fires without ref-
erence to an event.

• Inhibitor Arc
A virtual environment, “There are some nuts and
volts in a box. Until a trainee gets off all nuts, he
cannot get off any volts” can not be modeled if Petri
net does not have any capacity to do zero-test [9].
Although some extensions can be proposed to com-
pensate for this lack of capacity, Inhibitor Arc is in-
troduced in this study, because of consideration of
the simple conception. Not only this arc makes it
possible to model the above virtual environment but
also makes it easy to model a virtual environment in
which a state of an object inhibits the state transi-
tion of the other object. For example, “A nut fixes
a board on a wall” (The state of the nut inhibits
a state transition of the board to a state “removed
from the wall”).

• Reference Arc
There is a state of an object which is the condition for
a Transition to fire but does not change itself even
if the Transition fires. For example, the condition
for a trainee to operate an electric appliance is that
the switch of power is up. But even if the trainee
operates the appliance, “rotate dials”, “slide levers”

and so on, the power is still up. If the training envi-
ronment is modeled with Petri net, the same Place
comes to Input and Output Place of the same Transi-
tion. In this study, this Place is called as “Reference
Place” and this arc is called as “Reference Arc”.

• Pool Place
In case of locating plural objects which have same
characteristics in virtual environment, the way to
prepare a single Place for each object is redundant.
Therefore in this study Pool Place is introduced
which can be marked with plural Tokens. For ex-
ample, by modeling the state “pen: on a desk” with
Pool Place, it will be possible for trainees to locate
plural pens on the desk.

• Color Token
In case that there are plural pens on a desk which
a trainee can grasp, plural Tokens are located in the
corresponding Pool Place. When the trainee grasps
one of these pens, it is need to change the state of
the pen which is touched by trainee’s hand to the
state “grasped by right hand” and need not to change
the state of the other pens. In this way, in case
that the state of objects changes, the objects must be
distinguished. Therefore in this study, color Token
is introduced.

Example of modeling with Petri net
Figure 3 shows an example of modeling the virtual en-
vironment “These are two pens on floor. A trainee can
grasp and drop these pens with his right hand.” In this
figure, there are two Tokens in the Place which name is
“pen:on floor” because the number of the pens on floor is
two. Since the kind of the Place “pen: on floor” is Pool
Place, a trainee can locate two pens on floor. But because
the kind of the Place “pen: grasped by right hand” is Sin-
gle Place, a trainee cannot grasp plural pens at the same
time.

4. SYSTEM CONFIGURATION

As shown in Figure 4, the whole system consists of three
sub-systems: (1) simulation sub-system using a graphic
workstation, (2) display sub-system using CrystalEyes
and a display monitor or a projector, and (3) sensing sub-
system using a 2D, a 3D mouse and a keyboard. We
have adopted OpenGL library for rendering 3D images,
OSF/Motif library for constructing GUI environment and
SGL library for stereo viewing with CrystalEyes. The 3D
mouse is mainly used for pointing 3D position in virtual
environment when a training environment is constructed.
And when training, a trainee can choose gestures such as
grasp hand, release hand, drop objects and so on by using
the 3D mouse.

Figure 5 shows the interface of the developed system.
All information necessary for constructing virtual envi-

pen

on floor

right hand

open

right hand

grasp right hand

pen

grasped by right hand

pen

touched by right hand

touch a pen

right hand

falling to floor

pen

touch a pen with right hand

detach right hand from a pen

right hand

open

grasp a pen with right hand

pen

on floor

fallen to floor

drop a pen

Figure 3: An example of modeling with Petri net.

Display sub-system

CrystalEyes Display

3D Mouse KeyBoard2D Mouse

Graphics
Workstation

Simulation
sub-system

3D Graphics

OpenGL
Motif

Sensing sub-system

Figure 4: System configuration.

ronments can be fed under GUI environment without any
programming. And in this system the users can input
the state transition of objects in virtual environment by
constructing Petri net visually.

5. SYSTEM VALIDATION EXPERIMENT

Construction of training environment
To verify that the efficiency for constructing virtual en-
vironment is improved by using the developed system, a
training environment has been developed for disassem-
bling/assembling a check valve used in NPP which is the
same training environment developed with programming
at the authors’ previous work [3].

Figure 6 is a snapshot picture of the developed training
environment. The developed training environment con-
sists of 14 objects: pen, nut, volt, spanner and so on.
To complete the maintenance of the check valve, about
100 actions are needed. To construct the training envi-
ronment it costs 12 hours of system handling by single
user. Table 2 shows the numerical result of modeling the
training environment with Petri net.

Discussion
To be compared with the previous work which takes about
4 months by two programmers, the efficiency was remark-
ably improved. The major reasons for this remarkable

Figure 5: An example of Interface.

improvement are as follows:

• In the previous work, it was necessary to invent algo-
rithm for various simulations, since construction of
training environment was made by coding programs.
But using the developed system, the user did not
need such kind of troublesome programming work.

• A large number of errors always occur during the
course of constructing complicated training environ-
ment. When coding programs, debugging is very dif-

Table 2: Result of modeling with Petri net

Item Number

Single Place 98
Pool Place 2

Normal Transition 128
Automatic Transition 4

Inhibitor Arc 16
Referece Arc 50

Figure 6: A snapshot picture of training environment.

ficult and time consuming. But using the developed
system, errors can be corrected easily, because of the
simple construction procedure.

But the other problems have risen. The more complex
the target machine becomes, the larger Petri net must be
constructed. If Petri net becomes too large, it becomes
difficult to understand the structure of the net and to
update it. In fact, the numbers of Places and Transitions
of Petri net for the check-valve maintenance training are
100 and 132, respectively. It is too large to search for the
firing sequence by constructing reachable tree [10]. To
deal with this problem, it is necessary for us to design the
following strategies for the futher work:

• The division of a large Petri net into sub-Petri nets.
• The application of the colored Petri net.

6. CONCLUSION

In this study, we have developed a construction support
system for a VR-based training environment for machine
maintenance work. The basic concepts of the system is
that, (1) Users can construct a complicated training en-
vironment through GUI, and (2) An extended Petri net
is applied to manage the object state transition. In order
to design the support system, we have first pickd up the
essential information to construct the VR-based training
system, and then extended a Petri net in order to re-
alize the efficient construction work for virtual training
environment. In addition, we conducted the experiments
to evaluate the system by comparing with our previous
work. As the result, it was found that the system made
the great improvement of the workload when constructing
the training environment for a check valve maintenance.
At the same time, it was pointed out that the complicated

training tasks caused explosion of the number of Places
and Transitions of the Petri net. For the futher work, a
new strategy to divide and reconstruct the large Petri net
should be developed.

7. REFERENCES

[1] R.J. Seidel and P.R. Chatellier, Virtual Reality, Train-
ing’s Future?, NATO Defence Research Group, PLENUM
PRESS, 1997.
[2] K. Arai, K. Abe and N. Kamizi, “Development of a
simulator using virtual reality technology” The Transac-
tion of the Virtual Reality Society of Japan, Vol. 2, No. 4,
1997, pp. 7-16.
[3] H. Yoshikawa, T. Tezuka, K. Kashiwa and H. Ishii,
“Simulation of machine-maintenance training in virtual
environment” Journal of Atomic Energy Society of Japan,
Vol. 39, No. 12, 1997, pp. 72-83.
[4] J. Nomura and K. Sawada, Virtual Reality, Japan Soci-
ety for Fuzzy Theory and Systems, Soft Computing Series
10, Asakura Publishing, 1997.
[5] R. Murakami, “dVISE” Proceediings of the 5th IVR
seminar, Industrial Virtual Reality Show & Conference
(IVR’97), 1997, pp. 69-80.
[6] K. Kamibe, “Real Master” Proceediings of the 5th IVR
seminar, Industrial Virtual Reality Show & Conference
(IVR’97), 1997, pp. 87-93.
[7] H. Ishii, T. Tezuka and H. Yoshikawa, “A Study
on Design Support for Constructing Machine-Maintenace
Training System by Using Virtual Reality Technology”,
(to be presented at 7th IFAC SYMPOSIUM MAN-
MACHINE SYSTEMS, September 16-18, 1998, Kyoto,
Japan).
[8] Committee Draft ISO/IEC 15909, High-level Petri
Nets - Concepts, Definitions and Graphical Notation, Ver-
sion 3.4, 1997.
[9] J. L. Peterson, Petri net theory and the modeling of
systems, Prentice-Hall, Inc., 1981.
[10] R. Lipton, The Reachability Problem Requires Expo-
nential Space, Reserch Report 62, Department of Com-
puter Science, Yale University, 1976.

