
A New Integration Method of Constructing
an Interactive Virtual Environment for the Collaboration

between Virtual Agent and Real Human

Hirotake Ishii Keisuke Endou Kazumasa Sharyo

Daisuke Komaki Nobuyuki Ichiguchi Hidekazu Yoshikawa

Graduate School of Energy Science, Kyoto University
Gokasho, Uji, Kyoto, JAPAN 611-0011

Abstract
A new collaborative environment has been constructed

recently, in which a human-shaped virtual agent can
communicate with a real human through both verbal and
nonverbal ways. The collaborative environment is very
promising as the next generation communication envi-
ronment, but there exists a problem the workload for
the construction is too large for the practical use. In
this study, the system for simulating the collaborative
environment is divided into several subsystems accord-
ing to its function, and for each subsystem a new con-
struction method to reduce the construction workload has
been developed individually. In this paper, newly de-
veloped construction methods are described such as an
object-oriented method for constructing virtual spaces,
an affordance-based body motion synthesizing method
and a modeling method of the virtual agent’s behavior
using Petri-net.

1 Introduction
Virtual Reality technology can be applied for various

kinds of industrial and commercial fields such as amuse-
ment, education, design support. Especially, a new col-
laborative environment has been constructed recently,
in which a human-shaped virtual agent is located, and
the virtual agent can communicate with a real human
through both verbal and nonverbal ways. The virtual
agent plays a role of the substitute of real training in-
structor, cooperative worker, secretary and so on.

For example, Jeff Rickel and his colleagues have de-
veloped a pedagogical agent called “Steve” that sup-
ports the learning process[1]. Steve agents can demon-
strate skills to trainees, answer trainee questions, watch
the trainees as they perform the tasks, and give advice
if the trainees run into difficulties. Steve agents enable
the trainee to learn complicated tasks even if the trainee
is alone and a real instructor or the other trainee can-
not participate in the training. Therefore, such kind of
training environment is very promising as the next gen-
eration training environment, but there exists a problem
the workload is too large to construct the training envi-
ronment for the practical use of real field training.

Then, in this study, new construction methods have
been proposed to reduce the workload for constructing
such a next generation collaborative environment. Con-
cretely, the system for simulating the collaborative envi-
ronment is divided into several subsystems according to

its function and for each subsystem a new construction
method has been developed individually.

In this paper, new construction methods are de-
scribed for synthesizing the virtual agent’s body motion
as 3 dimensional computer graphics, designing virtual
spaces as collaborative environments and modeling the
virtual agent’s behavior using Petri-net[2].

2 System Configuration for Simulating
Collaborative Virtual Environment

In this study, the authors concentrate on the devel-
opment of the method for constructing the collabora-
tive environment for machine-maintenance task, such
as assembling and disassembling machines. Because the
machine-maintenance task is one of the most compli-
cated tasks and if the collaborative environment for the
machine-maintenance task can be constructed, it would
be possible to construct the collaborative environments
for the other tasks.

To simulate the collaborative environment for the
machine-maintenance task, several kinds of functions
should be realized as follows:

1. Both of the real human and the virtual agent can
manipulate virtual objects just like in the real
world,

2. The virtual agent can demonstrate the complicated
tasks to educate the real human, and

3. The real human and the virtual agent can com-
municate each other through verbal and nonverbal
ways.

In consideration of the above-required functions, the
system for simulating the collaborative environment
should be designed as shown in Figure 1. The system
consists of 7 subsystems as follows:

1. Speech Recognition Subsystem (Subsystem 1)
To make it possible for a real human to communi-
cate with the virtual agent through a verbal way, it
is necessary to recognize the utterance of the real
human.

2. Gesture Recognition Subsystem (Subsystem 2)
To make it possible for a real human to manipu-
late virtual objects, it is necessary to measure the

hirotake
Proceedings of the 10th IEEE International Workshop on Robot and Human Communication, pp. 50-55, 2001.



Figure 1: System Configuration for Simulating Collab-
orative Virtual Environment.

real human’s gesture by using datagloves, polhimus
sensors and so on.

3. Virtual Space Simulation Subsystem (Subsystem 3)
To make it possible for both the real human and
the virtual agent to manipulate virtual objects just
like in the real world, the simulation of the inter-
action between virtual objects should be based on
the related physical laws.

4. Behavior Planing Subsystem (Subsystem 4)
It is necessary to decide the virtual agent’s behavior
in according to the states of the virtual space and
the real human’s gesture. For example, if the real
human commits a wrong action, the virtual agent
should point it out and let the real human correct
the error.

5. Body Motion Synthesizing Subsystem (Subsystem
5)
To make it possible for the virtual agent to show the
demonstration of the complicated tasks, it is neces-
sary to synthesize the virtual agent’s body motion
as 3 dimensional computer graphics in real time.

6. Virtual Space Drawing Subsystem (Subsystem 6)
The Virtual Space Drawing Subsystem generates 3
dimensional images by using the information about
the current state of the virtual space and the cur-
rent posture of the vitual agent.

7. Speech Synthesizing Subsystem (Subsystem 7)
The Speech Synthesizing Subsystem synthesizes the
utterance of the virtual agent.

In the case of constructing a new collaborative envi-
ronment for the different kinds of tasks, it is necessary
to reconstruct the subsystems 3, 4 and 5. And the re-
construction of these subsystems with the conventional
methods needs a lot of cost, so a new method is required

in order to reduce the workload for constructing these
subsystems.

Therefore, in this study, new construction methods
have been developed with which a collaborative envi-
ronment for various kinds of tasks can be constructed
easily. Concretely, for the construction of the Subsystem
3, an object-oriented construction method for designing
virtual spaces has been developed. And for the con-
struction of the Subsystem 4, a new modeling method
has been developed for modeling the virtual agent’s be-
havior using Petri-net. Moreover, for the construction
of the Subsystem 5, a body motion synthesizing system
“AHMSS” has been developed which was designed based
on the idea derived from the concept of affordance. In
the following sections, these new construction methods
are described.

3 Development of the Body Motion
Synthesizing System

In this study, a body motion synthesizing system
(AHMSS) has been developed with which the virtual
agent’s motion can be synthesized based on the concept
of affordance. By applying the idea derived from the
concept of affordance, it is possible to reduce the work-
load for synthesizing the virtual agent’s motion. In this
section, how to apply the concept of affordance to design
the body motion synthesizing system is described.
3.1 Principle of the System Design

A human has a lot of joints and each joint has the
freedom of motion from one to three degrees. So a hu-
man has a large number of posture variables. To synthe-
size the human motion, all of the joint’s angles must be
specified. Numerous algorithms for synthesizing human
motions can be found in literature[3], but all of them are
limited to use for synthesizing a particular motion. Then
the conventional method of developing a system using
computer animation of virtual agents has been like this;
first, what kinds of the virtual agent’s motion should
be synthesized for realizing the system is decided, and
then the algorithms and the data for synthesizing those
kinds of virtual agent’s motion are constructed into the
system. Although the motion of the virtual agent can
be synthesized by such ways, the system is necessary to
be reconstructed again when you would like to change
the environment.

As one solution to this problem, there is the con-
cept of affordance[4]. The affordance was introduced
by psychologist James Gibson and he defined the af-
fordance as “a specific combination of the properties of
substance and its surfaces taken with reference to an an-
imal.” According to this concept, an action of a human
is triggered by the environment itself where the human
exists unlike the afore-mentioned way of interpretation
that the human would behave in accordance with the
model of the environment the human already possesses
in advance.

When this way of thinking would apply to the de-
velopment of the body motion synthesizing system, the
algorithms and the data for synthesizing the virtual
agent’s motion should be composed not in the virtual
agent’s brain but in the virtual objects located in the
virtual space. And the algorithms and the data should
be transferred from the virtual object to the synthesiz-
ing system at the time when they become necessary.

Based on the discussions mentioned above, the au-
thors make it the first policy of the system design that



the algorithms and the data necessary for synthesizing
the virtual agent’s motion are composed in the database
not for the virtual agent but for the virtual objects. This
design method makes it possible to use a new algorithm
for synthesizing a variety of body motions without re-
constructing the synthesizing system.
3.2 Mixing Two Kinds of Body Motion

If the distance between a cup and a chair is short
enough, a human can grasp the cup while sitting on the
chair. In this way, a human can perform an action which
relates to two different objects at the same time.

In this study, to make it possible to synthesize the
mixed motion, the authors suppose that a human does
not accept the affordance uniformly; the degree of the
affordance intensity varies in according to every part of
the human body. For example, a cup affords the motion
“grasp a cup” strongly toward the arm while weakly to-
ward the other part of the body. And a chair affords
the motion “sit on a chair” strongly toward the legs and
the hip while weakly toward the rest. If the distance
between a cup and a chair is short enough, a human ac-
cepts the affordance from both of the cup and the chair.
And because the degree of the affordance intensity from
the cup is stronger than that from the chair, the arm
performs the action “grasp a cup”. Likewise, because
the degree of the affordance intensity from the chair is
stronger than that from the cup, the legs and the hip
performs the action “sit on a chair”. All together, the
human acts “grasp a cup while sitting on a chair”.

Based on the discussions mentioned above, the
AHMSS is designed to synthesize the mixed motion.
Concretely, the concept of the motion weight is intro-
duced. The motion weight is the numerical value which
represents the priority of the human motion over the
other motion and it is set to each joint of human’s body.
In the AHMSS, the motion weight is prepared to every
action the virtual objects can afford.

The mixed motion can be obtained by using the fol-
lowing equation:

θ(t) =
θ1(t)W1(t) + θ2(t)W2(t)

W1(t) + W2(t)
(1)

where θ(t) is the joint angle of the mixed motion at
time t, θn(t) is the joint angle of the original motion n
at time t and Wn(t) is the motion weight of the joint
for the original motion n at time t (0 < Wn(t) ≤ 100).
With this approach various kinds of the virtual agent’s
motions can be synthesized easily by changing the com-
bination of actions and the beginning time of the mixing.
3.3 Support Application for Deciding the

Motion Weight
By using the motion weight, it becomes possible to

mix two kinds of human motions. But it is very diffi-
cult to decide the value of the motion weight, because
the appropriate value varies according to the kind of
motions.

Then, in this study, the support application for decid-
ing the value of the motion weight has been developed.
With this support application, the value of the motion
weight can be tuned through Graphical User Interface
as shown in Fig. 2. The application user can check
the mixed motion repeatedly with various values of the
motion weight.

Figure 2: Support Application for Deciding the Motion
Weight.

3.4 Examples of the Synthesized Body Mo-
tion

Figure 3 shows the example motion of the virtual
agent who picks up a cup while walking. In this case,
the virtual agent is afforded from both of the floor and
the cup. The floor affords the motion “walking” strongly
toward the legs while weakly toward the other part of
the body. And the cup affords the motion “grasp a cup”
strongly toward the arm while weakly toward the other
part of the body. Then these affordances are mixed by
using the motion weight which was prepared in advance.

4 New Method for Constructing Collab-
orative Virtual Environment

In this section, the object-oriented method for con-
structing virtual spaces (OCTAVE) is described. In the
OCTAVE method, there are two major classes; prop-
erty class and virtual object class. One instance of the
property class corresponds to one property of the virtual
object, and one instance of the virtual object class cor-
responds to the virtual object. And the virtual object
class is defined as the set of the property class. Figure
4 shows the configuration of the virtual object designed
with the OCTAVE method. And as shown in Fig. 5,
the property class consists of the following 4 elements:

1. A Petri-net for representing the discrete states of
the class and their transitions,

2. Plural variables for representing the continuous
state of the class,

3. Processes for simulating the property of virtual ob-
jects, and

4. The member classes which add various properties
to the parent class.

4.1 Petri-net
In the OCTAVE method, a class has two kinds of the

internal state, discrete state and continuous state. The
discrete state changes according to the events occurred
in the virtual space. Each discrete state is defined with



Figure 3: The example snapshots of the virtual agent
who picks up a cup while walking (Mixed motion).

Figure 4: Configuration of the virtual object designed
with the OCTAVE method.

the process for simulating the property of virtual ob-
jects. And when the discrete state changes, the process
for simulating the property also changes. For example,
when the state of the class is “grasped by the other ob-
ject which has the property ’able to grasp an object’ ”,
the process for simulating the virtual object’s movement
is executed so that the virtual object follows the other
object. And when the state of the class is “still”, the
process to fix the virtual object’s location and posture
is executed.

With the OCTAVE method, the discrete state and
its transitions of the class are defined by constructing
Petri-net. Concretely, one place in the Petri-net cor-
responds to one state of the class and the existence of
a token in the place represents that the class is in the
state of the corresponding place. And one transition in
the Petri-net corresponds to one event occurred in the
virtual space. Therefore, the transition of the state of
the class is modeled as the transition of the tokens in
the Petri-net.

The important point of the OCTAVE method is that
the property of the virtual objects is designed not by
indicating the other objects directly, but by indicating
the property of the other objects. For example, to de-

Figure 5: Configuration of the property class.

Figure 6: Relationship between a Parent Class and a
Member Class.

sign the situation that a pen is located on a desk, the
state of the pen is represented not as ’located on the
desk’, but as ’located on the object which has the prop-
erty that some objects can be located on’. By this de-
sign methodology, it becomes possible to design virtual
objects independently of the other virtual objects.

4.2 Variable
With the OCTAVE method, some variables are used

to represent the continuous state of the class which can-
not be represented by the Petri-net alone. For example,
location, posture, size of virtual objects would change
continuously with time.

4.3 Member Class
With the OCTAVE method, a member class is used

to add a property to the parent class. Figure 6 shows the
relationship between a parent class and a member class.
In the Figure 6, the class A, B, C has the property 1, 2, 3
respectively, and the class B and C are the member class
of the class A. In this case, the class A has the properties
1, 2, 3 at the same time. By using the relationship
between a parent class and a member class in this way,
the parent class can be defined by using the definition
of the other classes defined in advance. This provision
makes it possible to reduce the workload for designing
a new class.



Figure 7: Virtual pen designed with the OCTAVE
method.

4.4 Simulating the Interaction among Vir-
tual Objects

With the conventional method for constructing vir-
tual spaces, a virtual object is indicated directly to rep-
resent the relationship between two virtual objects. For
example, “a pen is located on a desk”. But with the
OCTAVE method, a property of a virtual object is in-
dicated so that it can make it possible to construct vir-
tual objects independently of the other virtual objects.
So, a new function is necessary to simulate the interac-
tion among virtual objects. In this study, a particular
function is prepared to mediate the information between
virtual objects. This function corresponds to “message
passing” of the object-oriented concept. For example,
to simulate the collision between virtual objects, a par-
ticular function is prepared to calculate the location of
the virtual objects, detect the collision and inform the
occurrence of the collision to the collided virtual ob-
jects. With this function, the simulation of the collision
between virtual objects can be realized.

4.5 Example
Figure 7 shows the virtual pen designed with the OC-

TAVE method. The virtual pen consists of Figure Class,
Collision Class, Free Fall Class, Grasped Class and so
on. The Figure Class adds the property to the Pen
Class that the virtual object has shape, location and
posture. The Collision Class adds the property that
the virtual object collides with the other virtual object.
The Free Fall Class adds the property that the virtual
object falls if released. And the Grasped Class adds
the property that the virtual object can be grasped by
the other object. The variables such as location and
posture are calculated by the simulation of the virtual
space. For example, when a token exists in the place
“Falling”, the variable of the location is calculated to
simulate the falling state of the virtual object. The arc
from the transition “Released” to the transition “Start
Falling” means that after the transition ’Released’ fires,
the transition “Start Falling” fires.

5 Modeling Virtual Agent’s Behavior
To make it possible for the virtual agent to educate

and support the real human in the collaborative envi-
ronment, it is necessary that the virtual agent has vari-
ous kinds of knowledge and can utilize them effectively.
In the field of Artificial Intelligence, there are a large
number of researches on modeling the virtual agent’s
knowledge, but the development of the human-like effi-
cient knowledge hasnot been accomplished yet. There-
fore the researches tend to be focused on how to develop
the human-like efficient knowledge. But the research on
how to make it easy to model the virtual agent’s knowl-
edge is also important for the practical use.

In this study, to make it easy to model the vir-
tual agent’s behavior, the modeling method using Petri-
net has been proposed and the support application for
constructing Petri-net specialized for modeling virtual
agent’s behavior has been developed.
5.1 Required Knowledge for Educating and

Supporting the Real Human
To make it possible for the virtual agent to ed-

ucate and support the real human for the machine-
maintenance work, the virtual agent needs to have the
various kinds of knowledge as follows:

• Physical knowledge
Physical knowledge is the knowledge which origin
is the physical laws. For example, “if a pen is re-
leased, it falls down” and “to take off a cover fixed
with a nut, it is necessary to take off the nut first”
are the Physical Knowledge. This knowledge is nec-
essary to make it possible for the virtual agent to
demonstrate and cooperate the maintenance work.

• Spatial Knowledge
Spatial Knowledge is the knowledge concerning the
spatial relationship among virtual objects. For ex-
ample, “to grasp a pen with a hand, it is necessary
to be in the place where the pen is reachable” is the
Spatial Knowledge.

• Knowledge about the target machine of the main-
tenance work
This knowledge is particular to the target machine
of the maintenance work such as the name of the
machine, the right procedure for the maintenance
work and so on.

• Communication Knowledge
Communication Knowledge is the knowledge which
is necessary when the virtual agent communicates
with the real human through verbal and nonver-
bal ways. For example, in the case of asking the
name of the virtual object, it is necessary for the
virtual agent to point the target object first and
utter “What is this?”.

In this study, as the first step of the development, the
method for modeling the virtual agent’s behavior using
Petri-net has been developed. The representation of the
virtual agent’s behavior using Petri-net enables us to
design the virtual agent’s behavior visually. Of course,
only by the employment of Petri-net, all the knowledge
mentioned above cannot be modeled. But the proce-
dural knowledge, which can be modeled with Petri-net



Figure 8: Petri-net representation of the work “grasp a
pen with a hand”.

easily, is the basis of all knowledge. In the following
subsections, the method for modeling virtual agent’s be-
havior using Petri-net and the support application for
constructing Petri-net specialized for modeling virtual
agent’s behavior are described.
5.2 Modeling Virtual Agent’s Behavior us-

ing Petri-net
In the method for modeling virtual agent’s behavior

using Petri-net, one place in the Petri-net corresponds to
one state of the virtual object or the virtual agent. And
the existence of a token in the place represents that the
virtual object or the virtual agent is in the state of the
corresponding place. And one transition in the Petri-net
corresponds to one action of the virtual agent.

For example, Figure 8 shows the Petri-net represen-
tation of the work “grasp a pen with a hand”. In this
case, the pen can be in the state “free”, “touched by a
hand” and “grasped by a hand”. And the virtual agent
can be in the state “stand still”, “in the place where a
pen is reachable”, “touches a pen” and “grasps a pen”.
And Figure 8 means the virtual agent and the pen is in
the state “stand still” and “free” respectively.

The place “stand still” and “in the place where a
pen is reachable” is the input and output place of the
transition “Move to the place where a pen is reachable”
respectively. So when the virtual agent acts the action
“Move to the place where a pen is reachable”, the state
of the virtual agent changes from the state “stand still”
to the state “in the place where a pen is reachable”.

By analyzing the reachability of the Petri-net shown
in Fig. 8, it can be found that to become the state
of the virtual agent “Virtual agent grasps a pen”, the
transitions “Move to the place where a pen is reach-
able”, “Reach for a pen” and “Grasp a pen” need to
fire sequentially. In this way, by analyzing the reacha-
bility of the Petri-net, the virtual agent’s behavior can
be decided.
5.3 Support Application for Constructing

Petri-net
In this study, the support application for constructing

Petri-net has been developed with which Petri-net can
be designed visually through Graphical User Interface
according to the method described in the subsection 5.2.
Figure 9 shows the interface of the support application.
By using this support application, a large Petri-net can
be constructed in short time.

Figure 9: Interface of the Support Application for Mod-
eling Virtual Human’s Behavior.

6 Conclusion and Future Work
In this study, new methods for constructing the Col-

laborative Virtual Environment have been developed to
reduce the construction workload. For the construc-
tion of the virtual space, the object-oriented method
has been proposed to make it possible for the virtual
objects to be constructed by combining the components
which are independently constructed in advance. And
for the synthesis of the virtual agent’s body motion,
the affordance-based design approach has been proposed
and the body motion synthesizing system AHMSS has
been developed. Moreover, for the modeling of the vir-
tual agent’s behavior, a new modeling method using
Petri-net has been proposed and the support applica-
tion for constructing Petri-net has been developed.

The proposed methods are implemented individually
as the different application. Therefore it is necessary to
integrate these methods and implement as single appli-
cation as the future work.

References
[1] Rickel, J. and Johnson, W., “Animated Agents for

Procedural Training in Virtual Reality: Perception,
Cognition, and Motor Control”, Applied Artificial
Intelligence, Vol. 13, pp. 343-382, 1999.

[2] Peterson, L., “Petri net Theory and the Modeling of
System”, Prentice-Hall, 1981.

[3] Badler, N., Philips, C. and Webber, B., “Simulat-
ing Humans: Computer Graphics, Animation, and
Control”, Oxford University Press, 1999.

[4] Gibson, J., “The Ecological Approach to Visual Per-
ception”, Houghton Mifflin Company, 1979.




