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Abstract: Improvement of tracking accuracy is an important issue when applying augmented reality to 
nuclear power plant fieldwork. Tracking accuracy depends highly on the marker arrangement when 
employing a tracking method using a camera and markers. For those reasons, this study develops a wheel 
tracking error computation method to compute the tracking error from the marker arrangement and 
errors in the screen coordinate. An evaluation experiment was conducted using a kind of linecode markers 
developed before. Experimental results show that the tracking error computation is reliable and the speed 
of the tracking error computation is affordable to be applied in real time error estimation in NPP field 
work support. 
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1. INTRODUCTION 

In Japan, nuclear power plants (NPPs) must 
undergo maintenance every 13 months. The NPPs' 
operation must be halted for about one month to 
disassemble and check equipment during the 
maintenance period. The NPP components are, 
however, much more numerous than those of a 
thermal power plant of similar scale. Moreover, 
NPP maintenance work is much harder because 
the NPP structure is typically more complicated. In 
addition, lack of expert field workers has become a 
widespread problem. Simultaneous improvement 
of maintenance work efficiency and reduction of 
human error are desired to improve NPPs' 
competitive power after the impending 
liberalization of the electric market. 

Augmented reality (AR) technology is broadly 
used for entertainment, education, surgery 
simulations, and other applications [1]. AR offers 
great possibilities to support NPP fieldwork. Using 
AR technique, we can identify 2D and 3D positions 
more intuitively than when using a legacy 
interface such as paper instruction documents. For 
example, annotations, informative figures, 3D 
maps, and videos can be superimposed in the field 
worker's view. It is expected that the workers can 
work more accurately and rapidly using AR 
support. 

An accurate and reliable tracking method is 
indispensable to apply AR technology to NPP 
fieldwork. To date, many tracking methods have 
been developed. Tracking technologies, such as 
global positioning systems, infrared rays, stereo 
view cameras, and ultrasonic and magnetic fields 
are popular now[1]. Although these tracking 
methods can realize accurate tracking at a certain 
level, they are difficult to apply to NPP fieldwork 
because these methods do not meet all 
requirements from the viewpoints of accuracy, 

stability, economics, and availability for the NPP 
field work[2][3]. Consequently, we sought to apply 
tracking methods that use cameras and markers 
(marker-based tracking) to NPP fieldwork. To 
achieve high reliability on tracking, we will 
develop a high reliability tracking method in this 
study with assurance with tracking error 
estimation (TEE). When tracking error is larger 
than a certain threshold, user will be warned 
because the tracking accuracy is not reliable at 
this time. 

According to the high reliability requirement of 
NPP field work support, the TEE algorithm should 
satisfy the following requirements. 

(1) Find the largest possible tracking error 
rather than probabilistic average error. 

(2) It must be sufficiently fast for practical use. 
Traditional TEE algorithms, such as [4], can not 

meet these requirements. Therefore, a wheel TEE 
algorithm is developed to meet these 
requirements. 

2. THE WHEEL TRACKING ERROR 

COMPUTATION ALGORITHM 

2.1 Definitions and Settings 

Figure 1 shows the coordinate definitions used 
for this study. Screen coordinates are defined as 
the origin at the center of the screen D; the x axis 
extends left to right, and the y axis extends 
upward on the screen. The camera coordinate is 
defined as the origin at the camera's focus point C, 
the z direction to the line of sight of the camera. 
The x and y directions of the camera coordinate 
are the same as the screen coordinate. 



 
Fig. 1 Coordinate system. 
 
The camera pose is a six-dimensional vector 

including the camera's three-dimensional (3D) 
position and 3D rotation. 

Pose C' satisfies that the camera at C' can 
capture the same markers as the camera at C. Here 
the following variables are used: Qi, i=1, 2… n are 
the 3D position of visible markers in the camera 
coordinate; n is the number of visible markers; mi, 
a 2D vector, is the image point of Qi in pose C 
screen coordinate; m'i is the image point of Qi in 
pose C' screen coordinate. The image difference of 
Qi between the camera at C and that at C' is 
defined as ||mi-m'i||. The largest image difference 
(LID) between the camera at C and that at C' is 
defined as the largest image difference among any 
two correspondent marker pairs, i.e. mi and m'i, in 
both images captured by camera at C and at C'. 
Equation (1) shows the definition of LID. 

i i
i=1,2,..., n

LID(C',C,M)= max  ||m -m' ||
 (1) 

In that equation, M is an MA. The marker's 
position accuracy on the screen is always limited 
because the camera resolution is limited when the 
marker is recognized using image processing. The 

position accuracy is assumed to be  . When 

LID(C', C, M)   , the pose of C' and C can 

not be distinguished and we say that C and C' can 
capture the same image. The tracking error region 
(TER) is a set of points at which a camera can 
capture the same image as the real pose C, where 
C' is one pose in the TER. 

 
2.2 Computation of Limitation Circles 

Next, the algorithm for computing TER will be 
described. Presuming that n markers are captured 
by the camera (n should be larger than 3 for 
tracking¥cite{p3p}), compute TER as the 
intersection region of following areas in the x-z 
plane: (1) for each 2 markers among the n 
markers, the area in which the camera can capture 
the same x-coordinates of the two markers; (2) for 
each single marker, the area in which the camera 
can capture the same y-coordinates of the marker. 
These areas are enclosed by circles. These circles 
are called limitation circles. 

 
2.2.1 Limitation Circles for the x Coordinate 
In Fig. 2, PA and PB are projection points of QA 

(xa, ya, za) and QB (xb, yb, zb) on the x-z plane in 
camera coordinate. A is the intersection point 

between CPA and the screen x axis. B is the 
intersection point between CP_B and the screen x 
axis. A, A1, A2,  B, B1, B2 are on the screen x axis 

and set ||A1A||=||AA2||=||B2B||=||BB1||=  . We 
cannot distinguish A1, A2 from A and B1, B2 from B 
because their differences in screen coordinate are 

smaller than . Consequently, pose C', which can 
capture same x dimension images of PA and PB as 
the real camera pose, satisfies 

2 1'A BP C P   
  (2) 

 
Fig. 2 Computation method for the track of C': 

the camera at C' can capture the same images of 
QA and QB in the x coordinate. 
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where D is the center of the screen and f  is 

the focal length of the camera. The track of C' on 

1'A BP C P    and 
2'A BP C P    are circles 1 and 

2, as shown in Fig. 3. The C' that satisfies (2) 
should be in the gray area between the two circles. 

 
Fig. 3 Computation method of a limitation circle 
 
The computation methods for circles 1 and 2 
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are the same. Here we take circle 1 for description. 
First assume that F is on circle 1 and satisfies 
||PAF|| = ||PBF|| to compute the center of circle 1, 
and that E is on PAPB and ||PAE||=||PBE||. Because 
||PAF|| = ||PBF||, EF is midnormal of PAPB. 
Therefore, the center of circle 1, point O (xO, 0, zO) , 
is on EF. Because ||OF||=||OPB||=R and  PAFPB=

1  (R is the radius of circle 1), OFPB = OPBF 

= 
1 /2. Therefore, 

1

|| || || ||

sin 2sin

A A B
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The slope angle of PAPB is arctan b a

b a

z z

x x






; 

the slope angle of PAO is 1 / 2      . 

Therefore, 

cosO ax x R  
   (8) 

sinO ay y R  
   (9) 

The gray area in Fig.3 is called the x limitation 
area. We can compute the x limitation area for any 
two markers in the n markers as for QA and QB. 

 
2.2.2 Limitation Circles for the y Coordinate 
Consider the y direction in the screen 

coordinate, as shown in Fig. 4. Hereby, set 

||A1A||=||AA2||= , CPA as the projection line of 
CQA on the x-z plane and A2A1 is parallel to y axis 
of the screen coordinate. D is the center of the 
screen and ||CD||=f. E is a projection point of A on 
the x axis of the screen coordinate. 

 
Fig. 4 Computation Method for Track of C': the 

camera at C' can capture the same images of Q_A 
in the y coordinate. 

Consequently, C', which can capture the same 
image of Q_A in y direction as C, should satisfy 

2 1'A AQ C P   
  (10) 

Hereby 𝛽2 = ∠ 𝐴2 𝐶 𝑃𝐴  and 𝛽1  = ∠ 𝐴1𝐶𝑃𝐴 . 
Centers of both circles are 𝑃𝐴 . Radii of the circles 
can be computed as ||𝑄𝐴𝑃𝐴|| 𝑐𝑡𝑎𝑛𝛽2  and 

  𝑄𝐴𝑃𝐴  𝑐𝑡𝑎𝑛 ∠ 𝛽1. 

Here, 
𝛽2  =  𝑎𝑡𝑎𝑛(𝑡𝑎𝑛∠ 𝑄𝐴  𝐶 𝑃𝐴  − Δ 𝑐𝑜𝑠∠ 𝐷𝐶𝐸) (11) 
𝛽1  =  𝑎𝑡𝑎𝑛(𝑡𝑎𝑛∠ 𝑄𝐴  𝐶 𝑃𝐴  + Δ 𝑐𝑜𝑠∠𝐷𝐶𝐸)  (12) 
∠ 𝐷𝐶𝐸 =  𝑎𝑡𝑎𝑛(𝑥𝑎 /𝑧𝑎)  (13) 
The area (a ring) between the two circles is 

called the y limitation area. Compute y limitation 
areas for any marker in the n markers as for 𝑄𝐴 . 

 
2.3 Computation of Tracking Error Region and 

Tracking Error 

The intersection region of all the x and y limitation 

areas is TER because the camera can capture all the 

markers exactly as the real pose. The computation 

method for the TER is shown in Fig. 4. Here, to 

introduce the computation method easily, we use a 

three-marker MA. For a n-marker MA, the 

computation method is the same. 

 
Fig. 4 Sample image of tracking error region. 
 
The computation method is called the wheel 

TEE algorithm. In the following, we will explain 
the TER computation procedure. All of 
𝑄𝐴 , 𝑄𝐵 ,  𝑎𝑛𝑑 𝑄𝐶  are respectively projected to 
𝑃𝐴 , 𝑃𝐵  𝑎𝑛𝑑 𝑃𝐶  in the x-z plane of the camera 
coordinate. As shown in Fig. 4, the camera at any 
position of Area 1 (x limitation area of 𝑄𝐴  and 
𝑄𝐵) can view the same x-dimension images of 𝑄𝐴  
and 𝑄𝐵 ; the camera at any position of Area 2 (y 
limitation area of 𝑄𝐴) can view the same y image 
of 𝑄𝐴 . Compute x limitation areas for (𝑄𝐵 , 𝑄𝐶)  
and (𝑄𝐴 , 𝑄𝐶 )  similarly as that for (𝑄𝐴 , 𝑄𝐵 ) . 
Compute y limitation areas for 𝑄𝐵  and 
𝑄𝐶  similarly as that for 𝑄𝐴 . The camera can view 
the same images of the three markers in the 
intersection region of all of the above regions: this 
intersection region is the TER. 

We can compute the edges of the TER as a set of 
arcs. The most distant position in the TER from 
the real camera must be at one intersection point 
of the circles introduced above (proved in section 
2.4). We must compute two circles to generate an 
x limitation area for each two markers and 
compute two circles to generate a y limitation area 
for each marker when the MA has n markers. We 
must compute n (n+1)  circles and n (n+1)/2 
limitation areas for n markers. Then compute the 
intersection points of these circles, find the 
farthest intersection point which can be in all 
limitation areas. The distance between the point 
and C is the tracking error. 

The above method can compute tracking error 
on x-z plane as 𝑒𝑥𝑧 . By rotating the MA through z 
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axis, tracking error of y direction can also be 
computed by above algorithm as 𝑒𝑦𝑧 . In the 

evaluation experiment, tracking error e is 
max(𝑒𝑥𝑧 , 𝑒𝑦𝑧 ). 

2.4 Why Computing only Intersection Points 

We need to prove that the farthest point in the 
TER is one intersection point of all the limitation 
circles. Also, the most distant point in any 
intersection arc to C is one of the ends of the arc. 

 
Fig. 5 Proof for the largest point is at one end of 

arc. 
 
As shown in Fig. 5, C is the origin of the camera 

coordinate. One limitation circle O is at (𝑥𝑂 , 0, 𝑧𝑂) 
with radius of R. Also, 𝑧𝑂 > 0 because marker(s) 
that generated the circle O should be visible to the 
camera. D and E are two intersection points 
between circle O and other circles. Now we 
assume that 𝐷𝐸   is one edge of the TER, and that 
K is the most distant point from C on circle O and 
||CK|| = ||CO|| + R. We must prove that the 
greatest distance from C to any point on 𝐷𝐸  is 
either ||CD|| or ||CE||. The problem can be 
described as 

𝑚𝑎𝑥 𝑓(𝑡)  =  𝑥2 + 𝑧2 ,  (14) 
where 
𝑥 = 𝑥0  +  𝑅 𝑐𝑜𝑠(𝑡)   (15) 
𝑧 = 𝑧0  +  𝑅 𝑠𝑖𝑛(𝑡)    (16) 
strict to 

𝑡 ∈   𝑡𝐷 , 𝑡𝐸 ⊂  [
𝜋

2
− 𝑎𝑡𝑎𝑛

𝑥0

𝑧0
,

5𝜋

2
 − 𝑎𝑡𝑎𝑛

𝑥0

𝑧0
]. (17) 

Equation (17) includes the assumption that 
∉  𝐷𝐸  . Because (1) there is at least one marker 
on circle O or at O and (2) 𝐷𝐸  is one edge of the 
TER, if ∈  𝐷𝐸  , then the tracking error is equal or 
greater than ||CK||. This tracking error is larger 
than the distance between the marker and the 
camera. Therefore, this kind of MA is not feasible 
and must be modified. The case in which 𝐾 ∈  𝐷𝐸  
can be determined and eliminated by checking 
whether 𝑡𝐾 ∈ (𝑡𝐷 , 𝑡𝐸)  . Therefore, we need 
consider only the case for which 𝐾 ∉  𝐷𝐸 . 

Substitute (15) (16}) into (14): 
max f(t′)  =  K1  +  K2  sin(t′)   (18) 
where 𝑡 ′ = 𝑡 + 𝑎𝑡𝑎𝑛(𝑥0/𝑧0) , 𝐾1 = 𝑥0

2 + 𝑧0
2 +

𝑅2 , 𝐾2 =  2 𝑅  𝑥0
2 + 𝑧0

2 , 𝑡𝐷
′  =  𝑡𝐷  +  𝑎𝑡𝑎𝑛(𝑥0 /

 𝑧0  ), 𝑡𝐸
′  =  𝑡𝐸  +  𝑎𝑡𝑎𝑛(𝑥0  / 𝑧0  ). 

We prove the problem by contradiction. Assume 
that ∃ 𝑡 ′ ∈  (𝑡𝐷

′ , 𝑡𝐸
′ )  satisfies 𝑓(𝑡′) > 𝑓(𝑡𝐷

′ )  and 

𝑓(𝑡′) > 𝑓(𝑡𝐸
′ ). From (18), 

𝑓(𝑡′) − 𝑓(𝑡𝐷
′ ) = 2𝐾2𝑠𝑖𝑛

𝑡 ′ −𝑡𝐷
′

2
𝑐𝑜𝑠 

𝑡′+𝑡𝐷
′

2
> 0 (19) 

𝑓(𝑡′) − 𝑓(𝑡𝐸
′ ) = 2𝐾2𝑠𝑖𝑛

𝑡 ′ −𝑡𝐸
′

2
𝑐𝑜𝑠 

𝑡′+𝑡𝐸
′

2
> 0 (20) 

Because 𝑠𝑖𝑛 
𝑡′−𝑡𝐷

′

2
> 0 , 𝑠𝑖𝑛 

𝑡′−𝑡𝐸
′

2
< 0  and 

𝐾2 > 0, 

  𝑐𝑜𝑠 
𝑡′+𝑡𝐷

′

2
> 0,  𝑐𝑜𝑠 

𝑡′+𝑡E
′

2
< 0.  (21) 

Furthermore, 
𝑡′+𝑡𝐷

′

2
, 
𝑡′+𝑡E

′

2
∈ [

𝜋

2
,

5𝜋

2
 ]. Therefore, 

𝑡′+𝑡𝐷
′

2
> 

3𝜋

2
 >  

𝑡′+𝑡E
′

2
.   (22) 

This contradicts 𝑡𝐸
′ > 𝑡𝐷

′ . Therefore, 𝑓(𝑡′)  <
 𝑓(𝑡𝐷

′ ) or 𝑓(𝑡′)  <  𝑓(𝑡𝐸
′ ), which means that ||CD|| 

or ||CE|| is the longest distance from C to any 
point on 𝐷𝐸 . 

3. EVALUATION EXPERIMENT 

3.1 Linecode Marker and its Tracking Method 

In this section, we present the shape design of a 
linecode marker and the linecode parameters 
(marker size, distance between markers, etc.), 
along with a determination method for the 
tracking range. 

 
Fig. 6 Conceptual image of linecode marker 
 
Fig. 6 shows a conceptual illustration of the 

linecode marker.  The linecode marker is a 
combination of black elements: each element 
corresponds to one bit. The square element 
signifies "0". The double-sized rectangle element 
denotes "1". 

In this study, bit number n=8 and s=30mm. 
The tracking method is a traditional P3P 

¥cite{p3p} method with least square optimization 
for other feature points except the used 3 feature 
points. Only the top elements and bottom 
elements of the linecode markers are used for 
tracking¥cite[linecode]. 

 
3.2 𝚫  Computation 

Δ is computed from two types of screen errors, 
error in recognition Δ𝑟  and error in tracking Δ𝑡 . 

Here Δ𝑟  is computed from the characteristics 
of the linecode marker. Δ𝑡  can be obtained from 
the tracking method. Δ𝑟  can be computed from 
perpendicular recognition error Δ𝑝  and inline 

recognition error Δ𝑖 . 
Δ𝑝  is defined as the distance between the center 

of the selected element (the top element or the 
bottom element) and the least square line of all 
the elements of the linecode marker.  

The distance between the top and bottom 
element can be computed as (𝑛 ∑𝑐𝑖  +  𝑛 −  2 −

C (0,0)

O(x , z )0      0
R

E

D

z

x

t = 0

K



 
𝑐0+𝑐1

2
)𝑠, where 𝑐𝑖  the code of the ith element in 

the linecode marker. 
Δ𝑖  is computed as follows, 

𝑑𝑖 = (𝑖 ∑ 𝑐𝑗
𝑖−1
𝑗=0 + 𝑖 − 2 −

𝑐0+𝑐𝑖−1

2
)𝑠 (23) 

Δ𝑖 = max
𝑖

|   𝑥0 − 𝑥𝑖 
2 +  𝑦0 − 𝑦𝑖 

2 − 𝑑𝑖 | (24) 

Here, (𝑥𝑖 , 𝑦𝑖) is the screen position and (𝑥𝑖
′ , 𝑦𝑖

′ ) 
is the projected screen position of the ith selected 
feature points. k is two times of the number of the 
linecode markers. 

Δ𝑡  is defined as the difference between the 
feature points on the screen and the projected 
feature points computed from the tracking result 
pose[2]. 

Δ𝑡 = max𝑖   xi − xi
′ 2 +  yi − yi

′ 2 (25) 

At last the Δ is decided to be 
Δ = Δ𝑟 + Δ𝑡    (26) 

where Δ𝑟 =  Δ𝑝
2 + Δ𝑖

2  because these two error 

are perpendicular to each other. 
 

3.3 Experimental Configuration 

Figure 7 portrays the experiment configuration. 
The global coordinate is defined as the origin at O 
in Fig. 7, the x direction is set toward the reader, 
the y direction is set to up, and the z direction is 
set to the left. All markers are placed vertically. 
The placement error is within 1 cm. This 
configuration is adopted to simulate the complex 
and large-scale environment in the NPP field. The 
camera is placed before the markers and the 
camera is moved from 0 to 8 m in the x direction 
and -2 to -11 m in the z direction. The camera was 
rotated at every point with 0, 20, 40 degrees (to 
the direction in which markers can be captured). 
The average illumination condition in the room is 
1050 lux. No linecode marker-like articles exist in 
the experiment room. 

 
Fig. 7 Experimental setup (unit: m). 

 
3.4 Experimental Results on Accuracy 

The real tracking error when the camera is 
placed at 0, 20, and 40 degrees are shown from 
left to right in Fig. 8. The estimated tracking error 
is shown in Fig. 9. The distance error is illustrated 
using the circle's diameter and grayscale. The 
circle's diameter is fixed and the error (unit: mm) 
is drawn on the circle if the error is greater than 
40 cm. 

The result shows that the wheel TEE algorithm 
can compute tracking error correctly. The compu- 
tation time is in 1 ms and therefore it is possible to 
implement the wheel TEE algorithm into the 
tracking method in real-time. 

4. CONCLUSION 

A wheel TEE algorithm is developed and 
evaluated in long distance tracking. The result 
shows the wheel TEE algorithm is feasible for 
implementing a high reliability tracking method. 
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Fig. 8 Real tracking error: from left to right, camera is set at  0°, 20°, 40° 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Estimated tracking error: from left to right, camera is set at  0°, 20°, 40° 
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