
A STUDY ON DESIGN SUPPORT FOR CONSTRUCTING
MACHINE-MAINTENANCE TRAINING SYSTEM
BY USING VIRTUAL REALITY TECHNOLOGY

H. ISHII ∗, T. TEZUKA ∗ and H. YOSHIKAWA ∗

∗Graduate School of Energy Science, Kyoto University, Gokasho, Uji-shi, Kyoto-fu, JAPAN

Abstract. A design support system has been developed for constructing VR-based training environ-
ments for machine maintenance work without any expertise knowledge and programming effort on
VR. Using the developed system, the users can easily construct various training environments under
GUI environment. It was verified through some experiments that the developed system can reduce
the working hours remarkably and that novice users who have no prior knowledge on the system
could construct a training environment successfully after a few hours of tutorial on the system. In
this paper, the system configuration and experimental results are described. Copyright c©1998 IFAC

Key Words. Virtual reality ; Design systems ; Training ; Petri-nets ; User interfaces

1. INTRODUCTION

Recently, Virtual Reality (VR) technology has
emerged and been developing remarkably so that
it becomes now possible for us to apply VR tech-
nology for various training purposes (Miwa et al.,
1995; Arai et al., 1997). In fact, it was reported by
NASA that VR-based training had been success-
fully used for on-the-ground pre-training of space
shuttle staffs who were in charge of Hubble tele-
scope repairing in outer space (Loftin and Kenny,
1995). The authors have developed a VR-based
training environment in which trainees can disas-
semble a check valve used in the nuclear power
plant (Yoshikawa et al., 1997).

Compared with the training systems based on
the real machines or real-size mockups, VR-based
training system has a number of advantages: eco-
nomical, safe for the trainee, no need of large
space, and so on. However, from the author’s past
experience, there arises a serious problem for de-
veloping software systems for VR-based training.
In fact, the workload of constructing the train-
ing environments is very large when a new train-
ing environment should be constructed for differ-
ent kinds of training tasks. The important point
is that expert knowledge and skills on computer
programming are required to construct the VR-
based training system. And it is very difficult for
those who are not so familiar with the program-
ming technology to construct the VR-based train-
ing system for various kinds of machine, which are
necessary for practical and effective training.

In this study, the user support system has been
developed for constructing a VR-based machine
maintenance training environment, which has the

following features:

• The users can construct a training environ-
ment without programming effort,

• The users can feed the necessary information
through Graphical User Interface (GUI),

• The users can set the state transition of ob-
jects in the virtual environment by visual con-
struction of Petri net model (Peterson, 1981),

• The constructed environment can be easily
changed and reused, and

• The users can execute the training simulation
by the same system.

There have been several systems developed for
constructing the virtual environment under GUI
environment (Fujii et al., 1996), but those existing
systems are designed only for constructing simple
virtual environments in which objects cannot be
manipulated just like in real world. No support
system has been yet developed for constructing
complicated virtual environments for training pur-
pose, where various kinds of machines and equip-
ments can be freely assembled and/or disassem-
bled with input devices.

In this paper, the basic idea for supporting the
construction is described in section 2, the system
configuration is illustrated in section 3, and then
the results to validate the system in section 4.

2. CONSTRUCTION OF VR-BASED
TRAINING ENVIRONMENT

2.1. Basic concept

Firstly, it is necessary to define the term “object”
for this training system in virtual environment;

hirotake
Proceedings of the 7th IFAC/IFIP/IFORS/IEA Symposium on Analysis, Design and Evaluation of Man-Machine Systems, pp. 389-394, 1998

“object” includes various parts of the machines to
be assembled or disassembled, tools to be used for
assembly/disassembly work, and both hands.

To make it possible for trainees to manipulate ob-
ject models just like in real world, the interaction
between objects and physical laws must be simu-
lated; for example, if a pen is grasped by a hand,
the pen must attach to the hand. It is possible
to detect the contact of each object with others
by using the surface model information. But it
is very difficult to judge whether or not each ob-
ject would contact with each other and then if
contacted, to describe the movement of contacted
objects. It takes a lot of computation time to do
so even by high performance computer.

So in this study, the concept “state of objects”
is introduced to virtual environment and the in-
formation on how an object in virtual environ-
ment moves in accordance to the trainee ges-
tures is prepared. To put it concretely, the users
prepare “state transition database” and “motion
database”. The state transition database gives in-
formation on what kind of states the object can
take and how the states of objects change in vir-
tual environment. And the motion database gives
the information on how the object moves at each
state.

In the training system, the movement of each ob-
ject is decided based on the motion database ac-
cording to the present state. And if an event (e. g.
a collision of objects) happens, all the states of the
concerned objects are changed based on the state
transition database. For example in case of an
action “grasp a nut on a table”, the relationship
between the state and its movement is described
as shown in Fig. 1. In this system, a user inter-
face is constructed by which the users can con-
struct these two databases efficiently under GUI
environment.

Concerning the state transition database espe-
cially, a new method has been developed to model
the state transition of objects in virtual environ-
ment, by which the users can input the state tran-
sition by constructing Petri net visually. The de-
tail of how to model the state transition of objects
by Petri net was published in the authors’ preced-

Related event : grasp hand Related event : release hand

State :

Movement:

State :

Movement:

State :

Movement:
on table

still

grasped by hand

follow hand

falling to table

free fall

Fig. 1. Relationship between states and its movement.

ing paper (Yoshikawa et al., 1997). And concern-
ing the motion database, it is possible for users
to make the motion database by selecting items
and setting the related numerical values. To make
it possible to construct various training environ-
ments, many kinds of variable items must be pre-
pared. In this system, about 60 parameters can be
set: on the surface of objects, on the movement of
objects, and so on. The detail of these parameters
will be explained in the next subsection.

But if the number of parameters to be set is so
large, the user’s work for setting those parameters
becomes so time consuming that the efficiency of
the system would not be expected. To cope with
it, the system is equipped with “object template
function” by which frequently used parameter set
can be registered when it first appears and re-used
repeatedly afterwards under GUI environment.

2.2. Variable parameters

The major parameters, which can be set in the
developed system, are summarized in Table 1,
with respect to types of the information, param-
eter numbers and the examples. By setting those
parameters, various objects such as “open/close
hand” , “falling object” and “flying balloon” can
be rightly represented in virtual environment, by
the way as will be explained below.

• Surface model of object
In some cases, it is necessary for describing
how an object will change its shape according
to the states. For example, the shape of ’open
hand’ and that of ’grasping something’ must
be different. In the system, therefore, the file
name of object’s shape and texture must be
set for each state.

• Initial position and direction after object
changes its state
In some cases, it is necessary for describing
how an object will change its position and
direction according to the states. For ex-
ample, if a trainee grasps a pen, the position
of the pen must change with the center of
the hand. In the system, therefore, an initial
position can be set for each state.

• Movement depends on time
To simulate the movement of a motor, “free
fall”, and so on, it is necessary for the system
to support to describe “movement depends
on time”. In the system, the movement of an
object can be represented by time function
and the user can select type of preset time
function and set its coefficients.

• Limit of movement
To simulate the interference of objects, it is
necessary to limit the movement of objects.
For example, in real world, an object can not

Table 1 Variable parameters

Information item Number of Example
parameters

Surface model of objects 4 Texture (RGB format), Shape (DXF format)
Initial position and direction 7 Position (x, y, z), Direction (yaw, pitch, roll)
Movement depends on time 12 Sin., Cos. and linear function can be set.
Limit of movement 18 The limit of position and direction can be set.
Movement depends on gesture 12 Attach to the hand

penetrate into the other object. But to simu-
late this, the method of detecting the contact
of objects by exact calculation is inappropri-
ate because of large amount of computation
time. In the system, the limit of movement
can be set by numerical values.

• Movement according to trainee’s gesture
To make it possible for a trainee to manipu-
late objects with his hand, it is necessary for
objects to move according to trainee’s ges-
ture. If trainee grasp a pen, for exam-
ple, the pen must move by the same way as
the trainee’s hand. In the system, the rela-
tion between the movement of an object and
trainee’s gesture motion can be set freely by
setting over 10 parameters.

Besides these parameters, some useful parameters
can be set in the system; the sound can be set
which is played when any event has occurred. Us-
ing this parameter, the collision of objects can be
presented with real sound. Moreover, a simple
shadow of an object can be drawn to make it easy
for the trainee to manipulate objects in 3D world.

3. SYSTEM CONFIGURATION

3.1. System configuration

As shown in Fig. 2 of system configuration, the
system consists of, (i) simulation sub-system, (ii)
display sub-system, and (iii) sensing sub-system.
The simulation sub-system corresponds to the
graphic workstation, the display sub-system in-
cludes CrystalEyes and a display, and the sensing
sub-system corresponds to a keyboard, a 2D and
a 3D mouse. We have adopted the OpenGL li-
brary for rendering the 3D images, the Motif li-
brary for constructing GUI environment and the
SGL library for stereo viewing with CrystalEyes.

For feeding the necessary information, the user
manipulates the 2D and 3D mouse, with viewing
3D images on the display. The 2D mouse is mainly
used for selecting information and inputting ob-
ject’s name, and the 3D mouse is used for pointing
the 3D position in virtual environment.

For training, the trainee manipulates a pack and

Display sub-system

CrystalEyes Display

3D Mouse KeyBoard2D Mouse

Graphics
Workstation

Simulation
sub-system

3D Graphics

OpenGL
Motif

Sensing sub-system

Fig. 2. System configuration.

Fig. 3. An example of GUI for setting parameters for
states.

buttons of the 3D mouse with stereo viewing by
CrystalEyes. Through the 3D mouse, the trainee
can choose gestures such as grasp a hand, release
a hand, drop objects, and so on.

3.2. The interface of developed system

Examples of the interface of the developed system
are shown in Figs. 3 and 4, respectively, for set-
ting parameters and constructing Petri net. The
users feed the necessary information for construct-
ing training environments through selecting toggle
buttons and setting numerical values. And in this
system, the users can input the state transition
of objects in virtual environment by constructing
Petri net visually. Besides, the buttons of the sys-
tem is designed as shown in Fig. 5, in order that
the users can easily imagine the function at first
sight of the buttons.

Fig. 4. An example of GUI for constructing Petri net.

Fig. 5. An example of icon buttons.

3.3. Procedure of constructing the training
environment

The construction of a training environment is
made by the following steps:

1. Preparation of materials for training,
The materials necessary for training are the
3D surface model of objects, texture and
sound. Those materials are prepared by us-
ing an appropriate application software such
as CAD(Computer Aided Design).

2. Preparation of “states” of objects,
Secondly, the possible states the objects will
take and the motion database must be pro-
vided.

3. Construction of Petri net,
By constructing Petri net visually, the state
transition database is created.

4. Setting of initial state of objects,
By marking tokens in Petri net, the initial
state of objects is set.

5. Training execution.

4. SYSTEM VALIDATION EXPERIMENTS

4.1. Construction of complicated training
environment

The workload for constructing a training environ-
ment was experimented by the developed system,
for assembling/disassembling a check valve, as an
example of constructing a complicated training
environment. Then it was compared with that
of the authors’ previous study (Yoshikawa et al.,
1997).

4.1.1. The target machine. The structure of a
check valve is shown in Fig. 6. For simplifica-
tion, the maintenance place is limited to the lid
of the valve, and the number of volts and nuts

arm

nut

lid
gasket

valve

case

stud bolt

hinge pin

flow

nut

Fig. 6. Structure of check valve.

Fig. 7. An example scene of maintenance training of
check valve.

is decreased from 16 to 4. The developed train-
ing environment consists of 14 objects: pen, nut,
volt, spanner and so on. In this training envi-
ronment, trainees can take various actions such
as loose nuts with a spanner, check a mark on a
valve with a pen, get off a lid of a valve, and so
on. And the training environment is constructed
by the same way, or as real as possible; for exam-
ple, before a nut is loosen by a spanner, the trainee
cannot loose the nut with his hand. To complete
maintenance of the check valve, about 100 actions
are needed. These conditions are almost the same
as the previous study except for utilizing textures
and sounds by the present support system.

4.1.2. Results. An example scene of the devel-
oped training environment is as shown in Fig. 7.
In this experiment, it costs about 12 hours for
a skilled user to construct this training environ-
ment. This is the time except for constructing 3D
surface models, but compared with the previous
study construction of almost same training envi-
ronment (it costs about 4 months by two program-
mers), the efficiency of the workload is remarkably
improved (see Table 2).

Table 2 Comparison of construction time

previous work with support
persons 2 1

(programmer) (system user)
working time 4 months 12 hours

4.1.3. Discussion. The reasons for the remark-
able improvement of efficiency by the developed
system are as follows:

• In the previous work, it was necessary to in-
vent the algorithm for various simulations,
since the construction of training environ-
ments was made by coding programs. But
using the developed system, the user did not
need such kind of troublesome programming
work.

• A large number of errors will always occur
during the course of constructing complicated
training environments. In coding programs,
debugging is very difficult and time consum-
ing. But using the developed system, errors
can be corrected easily, because of the simple
construction procedure.

4.2. Construction capability by novice users

To verify that even novice users can construct a
training environment using the developed system,
two students were asked to construct a simple
training environment.

4.2.1. Subject. The number of subjects was two
(subject A, B). Both of them had no experience
of constructing virtual environments with coding
programs. They were accustomed to using the
2D mouse and the keyboard, so they could input
necessary information very easily but they used
the developed system for the first time.

4.2.2. Methods. The surface models of the target
machine and textures were prepared beforehand
with other application. Prior to the experiment,
guidance course of 30 minutes was allocated to
the subjects, to explain how to use the developed
system and show them the procedure to construct
an example environment, in which a trainee can
grasp a pen and release a pen with his right hand.

The time necessary for constructing the indicated
environment was measured and the results of the
construction were also recorded. Moreover, after
the experiment, questionnaires were given to the
subjects about the developed system.

4.2.3. Target environment. The target environ-
ment is such that it is composed of a motor, a
rotating shaft and a fan, and a motor can start

Table 3 State information of rotating shaft

parameter value
state name rotate

surface model shaft.dxf
texture shaft.rgb

state type normal
draw type polygon
draw size 1.0

initial position none
translation disable
rotation able

axis of rotation local z-axis
mouse operation disable

Righthand
Free

Shaft
Rotating

Switch2
Still

Shaft
Still

Switch ON

Switch OFF

Fire when a hand
touches switch1.

Fire when a hand
touches switch2.

Switch1
Still

Fig. 8. Example of Petri net (state transition of
rotating shaft).

and stop its rotation by touching a switch. The
number of prepared surface models is 4; motor,
shaft, switch and base of switch. Necessary infor-
mation for setting the construction of rotating a
shaft are shown in Table 3 and Fig. 8. It was
predicted that the operation of constructing Petri
net would be easy, but that feeding the informa-
tion for the movement of a shaft would be difficult.

4.2.4. Results. Both of the subjects could con-
struct the objective training environment cor-
rectly. An example of the constructed training
environment is shown in Fig. 9. The working
time for the construction were 41 minutes(subject
A) and 38 minutes(subject B). They could feed
the necessary information for setting shaft move-
ment, which was assumed difficult to feed. Sub-
ject B confused how to construct Petri net, but
after trial and error, he could construct Petri net
correctly. The results of the questionnaires from
both subject are summarized bellow:

• At first I could not understand how each but-
ton works, but using the system for a few
hours, I could understand how to use these
buttons.

Fig. 9. A scene of training motor operation.

• With more familiarization with the system, I
felt the motivation that I would like to con-
struct more complex virtual environments.

• The positioning work of setting objects in 3D
world was very difficult.

• If I would use the system for a longer time, I
will be able to construct virtual environments
more freely.

4.2.5. Discussion. It can be said from the
above results that using the developed system,
even novice users can construct VR-based train-
ing environments through trial and error if the
environment is simple. Both of subjects have no
experience of constructing virtual environments
by coding programs, so if they try to construct
virtual environments from the beginning, it will
require much more time and larger workload be-
cause they need to study the basic knowledge of
programming technique.

On the other hand, it was pointed out from the
questionnaires that the interface for positioning
the objects in 3D world should be improved. Since
novice users who are not familiar with a 3D mouse
are difficult to place objects correctly in VR space,
alternative interface will be required for them,
which will use a 2D mouse under GUI environ-
ment.

5. CONCLUSION

In this study, a support system was developed
for constructing VR-based training environments
without coding. The effectiveness of the system
was confirmed through the validation experiments
with respect to the reduction of workload and
working hours and the familiarity with even novice
users.

The developed system can be applied not only
for training environments but also for generating
other interactive virtual environments such as vir-
tual show room, game, and so on. But in con-

junction with the application of this system for
actual training of maintenance personnel in the
nuclear power plant, the following additional func-
tions should be required:

• The function that offers alarms or advice
when the trainee executes an improper task
during “self-learning” course, and

• The function that offers, in virtual environ-
ment, the automatic performance of tasks to
be executed next, for “demonstrative” teach-
ing.

There is also a problem in the present system,
that the more complex the machine for training
becomes, the larger Petri net must be constructed.
If Petri net becomes too large, it becomes difficult
to understand the structure of the net and to up-
date it. To deal with this problem, the application
of colored Petri net is in consideration for future
works.

6. REFERENCES

Arai, K., K. Abe and N. Kamizi (1997).
Development of a simulator using virtual reality
technology. The Transaction of the Virtual
Reality Society of Japan 2(4), 7–16.

Fujii, T., T. Yasuda, S. Yokoi and J. Toriwaki
(1996). Visual simulation system for city
planning with realtime interactive processing.
The Transaction of The Institute of Electrical
Engineers of Japan 116-C(1), 36–42.

Loftin, R.B. and P.J. Kenny (1995). Training
the Hubble space telescope flight team.
IEEE, Computer Graphics and Applications
15(5), 21–37.

Miwa, S., T. Ueda and S. Nishida (1995).
A learing environment for maintenance of
plants and equipments based on virtual reality.
The Transaction of The Institute of Electrical
Engineers of Japan 115-C(2), 203–211.

Peterson, J.L. (1981). Petri net theory and the
modelling of systems. Prentice-Hall,Inc.

Yoshikawa, H., T. Tezuka, K. Kashiwa and
H. Ishii (1997). Simulation of machine-
maintenance training in virtual environment.
Journal of the Atomic Energy Society of Japan
39(12), 72–83.

